• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Implementation of A Smart Grid System Based on Blockchain Smart Contract Technology

Foo, Xueyuan January 2020 (has links)
Under de senaste åren har blockchain-tekniken fått mer och mer uppmärksamhet. Det har visat speciella fördelar i digital valuta, eftersom det distribueras och dess data inte kan ändras. Med fler länder som presenterar idén om kraftsysteminnovationen har ett stort antal distribuerade kraftkällor dykt upp. Nätanslutningen för dessa distribuerade kraftkällor leder till instabil nätdrift och ökar svårigheten att hantera kraftigt. Därför finns det ett akut behov av en lösning som kan realisera direkt transaktion av distribuerad kraftförsörjning. Denna artikel gör en fördjupad analys av blockchain-tekniken, inklusive hasalgoritm, konsensusmekanism, Merkle-träd, smart kontrakt etc. Och sedan studeras Ethereum och smarta nät. Den här artikeln realiserar automatisering och intelligens för mätning av eltransaktioner genom smart kontraktsteknik som tillhandahålls av Ethereum. En blockchain privat kedja skapas och sedan distribueras det smarta kontraktet i den privata kedjan. Med fördelarna med blockchaintekniken ovan kommer lagring av kraftdata och krafttransaktioner att vara mer trovärdig och mer transparent. Sammantaget designar och bygger detta papper ett smart grid-system baserat på blockchain-smarta teknik. Systemet kan inte bara användas för smarta nätsystem utan även för andra energisystem. Denna artikel ger en referens för tillämpning av blockchain-teknik. / In recent years, blockchain technology has received more and more attention. It has shown special advantages in digital currency, because it is distributed and its data cannot be altered. With more countries put forward the idea of the power system innovation, a large number of distributed power sources have emerged. The grid connection of these distributed power sources will lead to unstable grid operation and greatly increase the difficulty of management. Therefore, there is an urgent need for a solution that can realize direct transaction of distributed power supply. This article makes an in-depth analysis of the blockchain technology, including hash algorithm, consensus mechanism, Merkle tree, smart contract, etc. And then the Ethereum and smart grids are studied. This article realizes automation and intelligence of the electricity transaction measurement through the smart contract technology provided by Ethereum. A blockchain private chain is created and then the smart contract is deployed into the private chain. With the advantages of blockchain technology aforementioned, the storage of power data and the power transactions will be more credible and more transparent. All in all, this paper designs and builds a smart grid system based on the smart contract technology of blockchain. The system can be used not only for smart grid systems but also for other energy trading systems. This article provides a reference for the application of blockchain technology.
2

Smart Contract Maturity Model

van Raalte, Jordy Jordanus Cornelius January 2023 (has links)
A smart contract is a recently emerging technology which enables agreement to be automatable by computers and enforceable by legal enforcement or tamper-proof execution of code. A majority of smart contracts are run on the blockchain which enables smart contract transactions without a central authority. Smart contract implementation contains several challenges which makes implementation more difficult. The problem is that organisations struggle to implement smart contracts due to the absence of documentation, standardisation, and guidelines making it difficult to know how a smart contract should be implemented. Additionally, it is unclear what capabilities and tools are required for smart contract implementation. Therefore, it is challenging for organisations to assess their own competence of smart contract implementation. This thesis aims to develop a Smart Contract Maturity Model (SCMM). The purpose of the model is to clarify the functionalities and capabilities required to implement a smart contract while also offering organisations the ability to assess the smart contract implementation competency. This improves the adoption of smart contracts. Through the help of the design science framework, the SCMM emerged from the thesis. Applying design science included explicating the problem, defining requirements, designing and developing the artefact, demonstrating and evaluating the artefact. A literature survey was used to explicate the problem and to define requirements for the maturity model. Furthermore, a case study including interviews were used to refine the requirements and to demonstrate and evaluate the SCMM. The SCMM includes maturity levels, generic goals and practices, specific goals, key processing areas and practices, tools, glossaries and smart contract examples. Inspired by the Capability Maturity model Model Integration for Development (CMMI-DEV), the maturity levels of the SCMM consisted of initial, foundation, managed, defined, quantitatively managed and optimising. The identified key processing areas were stakeholder capabilities, resources and tools, platform, contract implementation, standards, laws and terminology and security. Although there were several limitations, the SCMM contributed to the field of smart contracts by closing the gap of previous research and improving the adoption of smart contracts.

Page generated in 0.0817 seconds