Spelling suggestions: "subject:"ettringite"" "subject:"ettringites""
1 |
Effets combinés de différents facteurs sur l'expansion des bétons causée par la formation différée de l'ettringitePetrov, Nikola. January 2003 (has links)
Thèses (Ph.D.)--Université de Sherbrooke (Canada), 2003. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
|
2 |
Etude de l'influence de différents paramètres et de leurs interactions sur la cinétique et l'amplitude de la réaction sulfatique interne au béton /Brunetaud, Xavier. January 2005 (has links)
Thèse de doctorat--Physico-chimie des matériaux--Paris--Ecole Centrale des arts et manufactures, 2005. / Bibliogr. p. 246-252.
|
3 |
Insensibilisation à l'eau des mélanges à base de sulfate de calcium par ajout de clinker sulfo-alumineuxKuryatnyk, Tetyana Pera, Jean. Derevianko, Viktor. January 2007 (has links)
Thèse doctorat : Génie Civil : Villeurbanne, INSA : 2007. / Titre provenant de l'écran-titre. Bibliogr. p. 239-245.
|
4 |
Etude de la valorisation des déblais de chantiers de tunnels riches en sulfates en granulats à bétonColas, Jérémy 04 December 2012 (has links) (PDF)
La société LTF (Lyon Turin Ferroviaire), filiale de RFF (Réseau Ferré de France) et de RFI (Réseau Ferré Italien) est le promoteur de la section transfrontalière de la future liaison ferroviaire entre Lyon et Turin. LTF souhaite valoriser une grande partie des 16 millions de m3 de déblais qui seront générés par les chantiers du futur tunnel de base en granulats à béton pour le revêtement du tunnel. Cette solution est proposée dans le cadre d’une démarche de développement durable. Cependant, pour une partie des matériaux qui doivent être valorisés en granulats à béton, la teneur en sulfates est comprise entre 1,61 et 4,30% en masse (exprimé en SO3). Ces matériaux se démarquent alors par rapport au contexte réglementaire qui limite la teneur en sulfates dans les granulats à béton à 0,2% pour ce type d’ouvrage. Cette prescription est appliquée pour éviter les risques de dégradation du béton par réaction des sulfates apportés par les granulats avec certains composants présents dans le ciment. Ce phénomène est connu sous le terme de réaction sulfatique interne. Les travaux de recherche ont porté dans un premier temps sur la lixiviation des sulfates issus des matériaux d’excavation. Les résultats ont montré que les sulfates sont rapidement accessibles dans les fractions granulométriques inférieures à 4 mm. Un possible traitement des matériaux par lavage avant leur utilisation dans le béton peut être une solution pour limiter l’attaque sulfatique interne. Dans un second temps, pour définir un liant adapté à ce type de granulats, une étude comparative de différents ciments supposés résistants aux sulfates a été mise en place. Trois essais accélérés ont été développés afin de prendre en compte le risque de dégradation des matériaux cimentaires par formation d’ettringite et de thaumasite. Seuls deux ciments présentent un bon comportement vis-à-vis de la réaction sulfatique interne engendrée par des granulats contenant une forte teneur en sulfates. Il s’agit d’un ciment Portland à très faible teneur en alcalins et ne contenant quasiment pas d’aluminates tricalciques ainsi qu’un ciment sursulfaté. Enfin, une dernière solution innovante a été proposée et réside dans l’utilisation des sulfates apportés par les matériaux d’excavation pour réaliser le gypsage du ciment. Les sulfates provenant du sable excavé permettent de réguler correctement la prise du matériau cimentaire au même titre que les sulfates de calcium ajoutés au clinker dans le ciment.
|
5 |
Contribution à l'étude de la Stabilisation de Déchets par du Ciment Sulfo-alumineuxPeysson, Sandrine Pera, Jean. Ambroise, Jean. January 2005 (has links)
Thèse doctorat : Génie Civil : Villeurbanne, INSA : 2005. / Titre provenant de l'écran-titre. Bibliogr. p. 254-260.
|
6 |
Removal of sulphates from South African mine water using coal fly ashGodfrey Madzivire January 2009 (has links)
<p>This study evaluated SO4 2- removal from circumneutral mine water (CMW) collected from Middleburg coal mine using coal FA collected from Hendrina power station. The following parameters were investigated: the effect of the amount of FA, the effect of the final pH achieved during treatment, the effect of the initial pH of the mine water and the effect of Fe and Al on SO4 2- removal from mine water. The precipitation of ettringite at alkaline pH was evaluated to further reduce the SO4 2- concentration to below the DWAF limit for potable water. Removal of SO4 2- from mine water was found to be dependent on: the final pH achieved during treatment, the amount of FA used to treat the mine water and the presence of Fe and Al in the mine water. Treatment of CMW using different CMW:FA ratios / 5:1, 4:1, 3:1, and 2:1 resulted in 55, 60, 70 and 71 % SO4 2- removal respectively. Treatment of CMW to pH 8.98, 9.88, 10.21, 10.96, 11.77 and 12.35 resulted in 6, 19, 37, 45, 63 and 71 % SO4 2- removal respectively. When the CMW was modified by adding Fe and Al by mixing with Navigation coal mine AMD and treated to pH 10, 93 % SO4 2- removal was observed. Further studies were done to evaluate the effects of Fe and Al separately. Treatment of simulated Fe containing AMD (Fe-AMD) to pH 9.54, 10.2, 11.8, and 12.1 resulted in 47, 52, 65, and 68 % SO4 2- removal respectively. When Al containing AMD was treated to pH 9.46, 10.3, 11.5 and 12 percentage SO4 2- removal of 39, 51, 55 and 67 % was observed respectively.</p>
|
7 |
Removal of sulphates from South African mine water using coal fly ashGodfrey Madzivire January 2009 (has links)
<p>This study evaluated SO4 2- removal from circumneutral mine water (CMW) collected from Middleburg coal mine using coal FA collected from Hendrina power station. The following parameters were investigated: the effect of the amount of FA, the effect of the final pH achieved during treatment, the effect of the initial pH of the mine water and the effect of Fe and Al on SO4 2- removal from mine water. The precipitation of ettringite at alkaline pH was evaluated to further reduce the SO4 2- concentration to below the DWAF limit for potable water. Removal of SO4 2- from mine water was found to be dependent on: the final pH achieved during treatment, the amount of FA used to treat the mine water and the presence of Fe and Al in the mine water. Treatment of CMW using different CMW:FA ratios / 5:1, 4:1, 3:1, and 2:1 resulted in 55, 60, 70 and 71 % SO4 2- removal respectively. Treatment of CMW to pH 8.98, 9.88, 10.21, 10.96, 11.77 and 12.35 resulted in 6, 19, 37, 45, 63 and 71 % SO4 2- removal respectively. When the CMW was modified by adding Fe and Al by mixing with Navigation coal mine AMD and treated to pH 10, 93 % SO4 2- removal was observed. Further studies were done to evaluate the effects of Fe and Al separately. Treatment of simulated Fe containing AMD (Fe-AMD) to pH 9.54, 10.2, 11.8, and 12.1 resulted in 47, 52, 65, and 68 % SO4 2- removal respectively. When Al containing AMD was treated to pH 9.46, 10.3, 11.5 and 12 percentage SO4 2- removal of 39, 51, 55 and 67 % was observed respectively.</p>
|
8 |
Removal of sulphates from South African mine water using coal fly ashMadzivire, Godfrey January 2009 (has links)
Magister Scientiae - MSc / This study evaluated SO4 2- removal from circumneutral mine water (CMW) collected from Middleburg coal mine using coal FA collected from Hendrina power station. The following parameters were investigated: the effect of the amount of FA, the effect of the final pH achieved during treatment, the effect of the initial pH of the mine water and the effect of Fe and Al on SO4 2- removal from mine water. The precipitation of ettringite at alkaline pH was evaluated to further reduce the SO4 2- concentration to below the DWAF limit for potable water. Removal of SO4 2- from mine water was found to be dependent on: the final pH achieved during treatment, the amount of FA used to treat the mine water and the presence of Fe and Al in the mine water. Treatment of CMW using different CMW:FA ratios; 5:1, 4:1, 3:1, and 2:1 resulted in 55, 60, 70 and 71 % SO4 2- removal respectively. Treatment of CMW to pH 8.98, 9.88, 10.21, 10.96, 11.77 and 12.35 resulted in 6, 19, 37, 45, 63 and 71 % SO4 2- removal respectively. When the CMW was modified by adding Fe and Al by mixing with Navigation coal mine AMD and treated to pH 10, 93 % SO4 2- removal was observed. Further studies were done to evaluate the effects of Fe and Al separately. Treatment of simulated Fe containing AMD (Fe-AMD) to pH 9.54, 10.2, 11.8, and 12.1 resulted in 47, 52, 65, and 68 % SO4 2- removal respectively. When Al containing AMD was treated to pH 9.46, 10.3, 11.5 and 12 percentage SO4 2- removal of 39, 51, 55 and 67 % was observed respectively. / South Africa
|
9 |
Removal of sulphates from South African mine water using coal fly ashMadzivire, Godfrey January 2009 (has links)
>Magister Scientiae - MSc / South African power stations generate large amounts of highly alkaline fly ash (FA). This waste product has a serious impact on the environment. Acid mine drainage (AMD) is another environmental problem associated with mining. AMD has high heavy metal content in addition to high SO/- concentrations. Several studies have shown that 80-90 % of SO/- can be removed when FA is codisposed with AMD rich in Fe and AI. In South Africa, many sources of contaminated mine waters have circumneutral pH and much lower concentrations of Fe and Al (unlike AMD), but are rich in Ca, Mg and SO2-4. This study evaluated sol removal from circumneutral mme water (CMW) collected from Middleburg coal mine using coal FA collected from Hendrina power station. The following parameters were investigated: the effect of the
amount of FA, the effect of the final pH achieved during treatment, the effect of the initial pH of the mine water and the effect of Fe and Al on SO/- removal from mine water. The precipitation of ettringite at alkaline pH was evaluated to further reduce the SO/- concentration to below the DWAF limit for potable water. Removal of sol from mine water was found to be dependent on: the final pH achieved during treatment, the amount of FA used to treat the mine water and the presence of Fe and Al in the mine water. Treatment of CMW using different CMW:FA ratios; 5:1, 4:1, 3:1, and 2:1 resulted in 55, 60, 70 and 71 % SO/- removal respectively. Treatment of CMW to pH 8.98, 9.88, 10.21, 10.96, 11.77 and 12.35 resulted in 6, 19, 37, 45, 63 and 71 % SO/- removal respectively. When the CMW was modified by adding Fe and Al by mixing with Navigation coal mine AMD and treated to pH 10, 93 % SO/- removal was observed. Further studies were done to evaluate the effects of Fe and Al separately. Treatment of simulated Fe containing AMD (Fe-AMD) to pH 9.54, 10.2, 11.8, and 12.1 resulted in 47, 52,65, and 68 % SO/- removal respectively. When Al containing AMD was treated to pH 9.46, 10.3, 11.5 and 12 percentage SO/- removal of 39,
51,55 and 67 % was observed respectively. Ion chromatography (IC), inductively coupled plasma-mass spectrometry (ICPMS) and inductively coupled plasma-atomic emission (ICP-AES) analysis of the product water, x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectrometry analysis of FA and solid residues collected after treatment of mine water complemented with PHREEQC thermodynamic modelling have shown that the mechanism of S042 - removal from mine water depends on the composition of the mine water. The sol- removal mechanism from CMW was observed to depend on gypsum precipitation. On the other hand sol- removal from mine water containing Fe and Al was dependent on the precipitation of gypsum and Fe and Al oxyhydroxysulphates. The oxyhydroxysulphates predicted by PHREEQC as likely to precipitate were alunite, basaluminite, ettringite, jarosites and jurbanite. Treatment of CMW with FA to pH 12.35 removed sol- from 4655 ppm to approximately 1500 ppm. Addition of amorphous AI(OH)3 to CMW that was treated to pH greater than 12 with FA was found to further reduce the sol concentration to 500 ppm which was slightly above the threshold for potable water of 400 ppm. The further decrease of sol concentration from 1500 to 500 ppm was due to ettringite precipitation. Mine water treatment using FA was found to successfully remove all the major elements such as Fe, AI, Mn and Mg to below the DWAF limit for drinking water. The removal of the major elements
was found to be pH dependent. Fe and Al were removed at pH 4-7, while Mn and Mg were removed at pH 9 and 11 respectively. The process water from FA treatment followed by gypsum seeding and addition of AI(OH)3 had high concentration of Ca, Cr, Mo and B and a pH of greater than 12. The pH of the process water from FA treatment followed by gypsum seeding and addition of AI(OH)3 was reduced by reacting the process water with CO2 to 7.06. The process water from the carbonation process contained trace elements such as Cr, Mo and B above the DWAF effluent limit for domestic use. Carbonation of the process water reduced the water hardness from 5553 ppm to 317 ppm due to CaC03 precipitation, thereby reducing the Ca concentration from 2224 ppm to 126 ppm.
|
10 |
Enhancing the understanding of lime stabilisation processesBeetham, Paul January 2015 (has links)
Lime stabilisation is a ground improvement technique used to improve the engineering properties of cohesive fill materials. During earthworks operations, specialist plant is used to rotovate the clay fill material and intermix lime binder around clay clods. After completion of the lime treatment, the layer is compacted in the usual way. Immediately after mixing, the lime instigate a series of physico-chemical reactions within the clay soil. Where the chemical reactions are favourable and with time after compaction (curing) the material becomes progressively stronger and durable to environmental influences, e.g. inundation by surface or ground water. However, where sulphate is present within the soil, the reactions may change and the ingress of water into the layer can result in the expansive growth of deleterious minerals e.g. ettringite. While sulphate swell issues are relatively rare, when they do occur the degree of expansion can be very high. A high profile sulphate swell failure developed during the construction of the M40, Oxford, UK in 1989. Over the winter period after the lime stabilisation works, a 250mm deep lime treated layer heaved by up to 150mm - destroying the overlying road construction. Since the M40 failure, a substantial amount of effort has been undertaken to better understand the sulphate swell reactions and in this regard the state of scientific knowledge is relatively strong. A fundamental issue for field applications of lime stabilisation is that the vast majority of research has been undertaken on laboratory specimens prepared using methods which do not reflect site practice. Laboratory studies often use oven dried and finely crushed clay, whereas site operations will treat much larger clay clods to result in a more heterogeneous distribution of lime through the compacted soil body. With large clay clods, the chemical reactants must migrate through clods and this may cause the sequence of chemical reactions to change. A further challenge is that laboratory studies are typically undertaken with cure temperatures of 20°C, whereas a typical near surface temperature in the UK is <10°C. This is of particular relevance to sulphate swell failures which are reported to coincide with a reduction in ambient temperature over winter periods. Thus, the direct relevance of laboratory studies to site application was unclear. A series of laboratory experiments using a preparation method which reflects field applications of lime stabilisation was used to investigate the influence of large clay clods on the durability of lime stabilised clay soil. This method was applied to both low and high sulphate clay soils. A fundamental discovery from work on low sulphate clay is that the addition of lime binder to the surface of the clay clods causes a physico-chemical boundary to form. This boundary develops due to the rapid increase to the plastic limit of the clay preventing adjacent clods from joining together during compaction. This causes the engineering properties of each individual clod to develop independent to its neighbours and for each clay clod to be separated by an inter-clod pore space. The strength of each individual clay clod will increase with curing as the added lime dissociates into Ca2+ and OH- and migrates to form C-S-H deep within the clods. Where the material is compacted wet of the optimum water content, this condition improves ion migration and enables development of diffuse cementation deep within clods. The inter-clod porosity remains as a weakness throughout curing especially during specimen soaking, where the pore channels comprise a pathway, accelerating the ingress of soaking water. With low sulphate soil, the soaking water softens the treated material, however, with high TPS soil substantial sulphate swelling may develop. Thus, efforts to minimise this porosity during preparation is important and the use of quicklime with longer mellowing periods can cause the clay clods to develop high strength before compaction. The high strength clods resist compaction and the degree of inter-clod porosity in the compacted mass increases, worsening specimen durability to water ingress. The investigations into high sulphate clays included the development of a Novel Swell Test (NST) to assess volume change. A unique aspect of the NST was that the sulphate swell response of the lime treated material was investigated at site realistic temperatures of 8°C. It was identified that, when compared with standard laboratory test temperatures of 20°C the rate of sulphate swell is substantially higher at the low temperature. The mineralogical testing has permitted the hypothesis that, at 8°C the growth of crystalline ettringite becomes slower and the ettringite precursor, which has a high affinity to imbibe water, remains in this state for much longer. Thus, laboratory swell tests at 20°C may substantially underestimate the degree of swell that may develop in the field. As a pressing need, it is recommended that the industry adapt sulphate swell test methods to appraise the degree of swell at field realistic temperatures i.e. < 10°C. The work also identifies that the primary defence against sulphate swell is to condition the fill so that the risk of post compaction water ingress, via inter-clod porosity, is minimised. The use of GGBS and water addition during extended mellowing periods also reduces the degree of sulphate swell in natural clay soils. This work concludes that working methods for lime stabilisation of medium high plasticity soils of a potentially high sulphate content, should be adapted to encourage diffuse cementation and minimise the degree of (post compaction) inter-clod porosity. Practically this involves the use of hydrated lime and the addition of mixing water throughout extended mellowing periods. Fundamentally, the study recommends that where construction programmes allow, the long term durability of a fill material should be the priority over immediate strength.
|
Page generated in 0.0555 seconds