• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 16
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 130
  • 130
  • 28
  • 24
  • 22
  • 21
  • 18
  • 17
  • 17
  • 16
  • 15
  • 15
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Synthesis of DNA - protein conjugates and a preliminary study of their interaction with eukaryotic cell receptors.

Weiler, Solly. 12 November 2013 (has links)
Thymidine oligomers were chemically synthesised and linked to available amino functions of transferrin in alternative orientations: (a) A CMP residue attached to the 3' end of (pT)₁₀ with terminal deoxynucleotidyl transferase was oxidised with NaI0 and linked to transferrin via a Schiff base formation. (b) The 5' terminal phosphate group of (pT)₅ was activated with imidazole and reacted with transferrin to form a phosphoramide bond. The (pT)₅ thus attached to the protein was elongated to (pT)₃₀₀ using terminal deoxnucleotidyl transferase and TTP. The latter conjugate was capable of hybridising poly(A) tailed linear PBR322 DNA. The binding of this hybridisation complex to the transferrin receptor on various cell types was investigated. / Thesis (M.Sc.)-University of Durban-Westville, 1986.
82

Molecular Basis for the Recognition of the Regulatory Stem-loop Structures in Eukaryotic Messenger RNAs

Tan, Dazhi January 2014 (has links)
Apart from carrying genetic information, RNAs also act as effectors of cellular processes through folding into intricate secondary and tertiary structures. The ubiquitous RNA structures in eukaryotic mRNAs, in collaboration with specific RNA-binding proteins, control many aspects of the post-transcriptional regulation of gene expression. However, the molecular bases for the recognition of these mRNA structures by their protein partners remain poorly understood due to the lack of structural information. This dissertation presents our structural studies on two protein-RNA complexes that both include regulatory mRNA stem-loop structures. We first describe the crystal structure of a ternary complex including the highly conserved human histone mRNA stem-loop (SL), the stem-loop binding protein (SLBP) and the 3′ to 5′ exonuclease 3′hExo. This structure identifies a single sequence-specific interaction between the SL and SLBP, and the mostly shape-dependent RNA-recognition mode by both proteins. In addition to explaining the large body of biochemical and biophysical data on this complex accumulated over the last two decades, we also for the first time elucidate the induced-fit mechanism underlying the cooperativity between SLBP and 3′hExo. We next shift our focus to a class of less conserved mRNA stem-loop structures named constitutive decay elements (CDE). The RNA-binding ROQ domain of Roquin recognizes the various CDEs and mediates the decay of CDE-containing mRNAs, which predominantly encode proteins responsible for inflammation and autoimmunity. Structural and biochemical studies of the ROQ domain in complex with two different CDE RNAs unexpectedly reveal two distinct RNA binding sites on this protein, one recognizing CDE stem-loops and the other binding to double-stranded RNAs. The stuctures are also in agreement with the versatility of Roquin and have opened up new avenues to investigating its functions in modulating the stability of target mRNAs.
83

The role of cyclin dependent kinase 2 (Cdk2) in the proliferation and differentiation of pluripotent embryonic stem cells / Elaine B. Stead.

Stead, Elaine January 2002 (has links)
Errata inserted inside back cover. / "August 2002" / Includes bibliographical references (leaves 146-174) / 177 leaves, [91 leaves of plates] : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Molecular Biosciences, 2002
84

Genome instability induced by triplex forming mirror repeats in S.cerevisiae

Kim, Hyun-Min 07 April 2009 (has links)
The main goal of this research is to understand molecular mechanisms of GAA/TTC-associated genetic instability in a model eukaryotic organism, S. cerevisiae. We demonstrate that expanded GAA/TTC repeats represent a threat to eukaryotic genome integrity by triggering double-strand breaks and gross chromosomal rearrangements. The fragility potential strongly depends on the length of the tracts and orientation of the repeats relative to the replication origin and to block replication fork progression. MutSbeta complex and endonuclease activity of MutLalpha play an important role in facilitation of fragility. In addition to GAA/TTC triplex forming repeats, non-GAA polypurine polypyrimidine mirror repeats that are prone to the formation of similar structures were found to be hotspots for rearrangements in humans and other model organisms. These include H-DNA forming sequences located in the major breakpoint cluster region at BCL2, intron 21 of PKD1, and promoter region of C-MYC. Lastly, we have investigated the effect of the triplex-binding small molecules, azacyanines, on GAA-mediated fragility using the chromosomal arm loss assay. We have found that in vivo, azacyanines stimulate (GAA/TTC)-mediated arm loss in a dose dependent manner in actively dividing cells. Azacyanines treatment enhances the GAA-induced replication arrest. We discovered that also, azacyanines at concentrations that induce fragility also inhibit cell growth. Over 60% of yeast cells are arrested at G2/M stage of the cell cycle. This implies an activation of DNA-damage checkpoint response.
85

UGA-mediated selenium incorporation into glutathione peroxidase 1 and green fluorescent protein /

Wen, Wu, January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves 141-152). Also available on the Internet.
86

UGA-mediated selenium incorporation into glutathione peroxidase 1 and green fluorescent protein

Wen, Wu, January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves 141-152). Also available on the Internet.
87

The role of the yeast COG3, VPS35, and YDR141C proteins in membrane trafficking /

Bruinsma, Paul, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 177-189). Also available on the Internet.
88

The role of the yeast COG3, VPS35, and YDR141C proteins in membrane trafficking

Bruinsma, Paul, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 177-189). Also available on the Internet.
89

Characterization of mitochondrial C₁-tetrahydrofolate synthase transcript and protein expression in adult and embryonic mammalian tissues and the role of the mitochondrial one-carbon pathway in the cytoplasmic methyl cycle

Pike, Schuyler Todd, 1966- 01 October 2012 (has links)
In eukaryotes, folate-dependent one-carbon (1-C) metabolism is composed of two parallel pathways compartmentalized to either the cytoplasm or mitochondria. In each, 1-C units, carried on tetrahydrofolate (THF), are interconverted by four catalytic activities. Serine hydroxymethyltransferase transfers the 3-carbon of serine to THF forming 5,10-methylene-THF which is oxidized in 3 successive steps to formate via the intermediates, 5,10-methenyl-THF and 10-formyl-THF. Because of the redox potential in each compartment, 1-C flux is thought by most authors to be from formate to serine in the cytosol and in the opposite direction in mitochondria. Transport of serine, glycine and formate across the mitochondrial membranes creates a 1-C cycle. All eukaryotes characterized to date contain a cytoplasmic trifunctional C1-THF synthase possessing 5,10-methylene-THF dehydrogenase, 5,10-methenyl-THF cyclohydrolase and 10-formyl-THF synthetase activities which interconvert the catalytic intermediates between 5,10-methylene-THF and formate. However, despite the observation that adult rat liver mitochondria oxidize serine to formate, no known enzymatic activities correlate with those of cytoplasmic C1-THF synthase. In embryos, a bifunctional protein, containing 5,10-methylene-THF dehydrogenase and 5,10-methenyl-THF cyclohydrolase, accounts for two of these activities. But the 10-formyl-THF synthetase activity has no associated enzyme in mitochondria. Reported here is the discovery of a monofunctional homolog of C1-THF synthase in mammalian mitochondria. Characterization of the protein confirms mitochondrial localization and 10-formyl-THF synthetase activity. Likewise, the adult human transcript is present and differs in size and tissue distribution from cytosolic C1-THF synthase. In mouse embryos, the temporal expression of the mRNA starts out relatively low and increases as the embryos age. The spatial distribution of the transcript is ubiquitous but with areas of elevated expression corresponding to proliferative regions within the embryo. The temporal expression pattern of the protein and transcript correspond well. However, mitochondrial flux studies and immunoblotting data suggest that mitochondrial C1-THF synthase is not the rate-limiting enzyme in mitochondria, at least during the mid to later stages of embryogenesis. Additionally, studies modulating the expression of mitochondria 1-C proteins demonstrate the likelihood that most cytoplasmic 1-C units are mitochondrially derived. / text
90

Mathematical modeling of eukaryotic gene expression

Tang, Terry, University of Lethbridge. Faculty of Arts and Science January 2010 (has links)
Using the Gillespie algorithm, the export of the mRNA molecules from their transcription site to the nuclear pore complex is simulated. The effect of various structures in the nu- cleus on the efficiency of export is discussed. The results show that having some of the space filled by chromatin near the mRNA synthesis site shortens the transport time. Next, the complete eukaryotic gene expression including transcription, splicing, mRNA export, translation, and mRNA degradation is modeled using delay stochastic simulation. This allows for the study of stochastic effects during the process and on the protein production rate patterns. Various protein production patterns can be produced by adjusting the poly-A tail length of the mRNA and the promoter efficiency of the gene. After that, the opposing effects of the chromatin density on the seeking time of the transcription factors for the promoter and the exit time of the mRNA product are discussed. / xi, 102 leaves ; 28 cm

Page generated in 0.0567 seconds