• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem multifasica Euleriana-Euleriana para simulação numerica de ciclones / Eulerian-Eulerian approach for numerical simulation of cyclones

Vegini, Atilano Antonio 27 July 2007 (has links)
Orientador: Milton Mori / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-09T09:36:46Z (GMT). No. of bitstreams: 1 Vegini_AtilanoAntonio_D.pdf: 28017713 bytes, checksum: b5c4951104b5d515ebe084a6388a6ea2 (MD5) Previous issue date: 2007 / Resumo: Neste trabalho é apresentado o código computacional CYCLO, programa desenvolvido especificamente para predizer o escoamento multifásico em ciclones. Os ciclones são equipamentos utilizados na indústria, principalmente, para a separação de material particulado de correntes gasosas. Desde o início da industrialização até a atualidade, os ciclones são investigados cientificamente na tentativa de elucidar o real funcionamento deste complexo sistema de escoamento que ocorre no interior destes equipamentos. Com o avanço computacional, as modernas técnicas da fluidodinâmica computacional (CFD), têm se mostrado capaz de auxiliar nas investigações científicas sobre os ciclones. O código CYCLO, é um destes programas baseado nas técnicas da fluidodinâmica computacional (CFD). Consiste de um modelo multifásico num referencial euleriano, e composto de equações diferenciais parciais que são resolvidas numericamente através da aplicação do método dos volumes finitos, com acoplamento pressão-velocidade e malha numérica deslocada. A hipótese de simetria no eixo é assumida, tornando possível a utilização de um modelo 3DSimétrico em coordenadas cilíndricas. O código CYCLO torna possível à utilização de até três fases sólidas, cada uma caracterizada por seu tamanho de partícula, massa específica e fração volumétrica. O escoamento da fase sólida é considerado invíscido e a transferência de quantidade de movimento interfase predito pela adoção de um modelo de força de arraste. Para representar o comportamento anisotrópico dos tensores de Reynolds na fase gasosa, é utilizado um modelo de turbulência híbrido composto por uma combinação do modelo k-e padrão para os componentes radiais e axiais do tensor de Reynolds, e, para os componentes tangenciais por intermédio da teoria do comprimento de mistura de Prandtl. Os objetivos deste trabalho vão desde a verificação e validação do código CYCLO com seu modelo multifásico euleriano-euleriano e todas suas hipóteses simplificadoras, até a apresentação de aplicações práticas do uso das técnicas de CFD. Para a verificação e validação do código, os resultados obtidos numericamente são comparados com valores experimentais para o escoamento monofásico e para o escoamento multifásico. Como exemplo de aplicação prática das técnicas de CFD, é apresentado a utilização do código na análise e projeto de ciclones industriais / Abstract: In this work it is presented the computational code CYCLO, which is a program developed specifically to predict the dynamic behavior of the gas-solid flow in cyclones. The cyclones have been used extensively in many industries for a long time for separating the particles from gaseous streams. Since the beginning of the industrialization until the present time, the cyclones are investigated scientifically in order to elucidate the real functioning of this complex flow behavior inside of these equipments. With the computational advance, the modern techniques of the computational fluid dynamics (CFD), has been capable to assist in the scientific inquiries concerning cyclones. The CYCLO code is one of these programs based on computational fluid dynamics (CFD) techniques. The program consists of a multiphase flow model based on the Eulerian-Eulerian approach and it is composed of several partial differential equations, which are solved using the finite volume method with pressure-velocity coupling and staggered grids. The axial symmetry hypothesis is assumed, which makes possible to apply the 3D symmetric model in cylindrical coordinate. The CYCLO code makes possible the use of up to three solid phases, each one represented by a particle diameter, density and specific volumetric fraction. The solid-phase flow is considered inviscid and drag forces between phases are responsible for the gas-solid interaction. To represent an anisotropic behavior of the Reynolds stress in the gas phase, it is used a hybrid model composed of the combination of the (k-e) standard model for the radial and axial components and Prandt¿s longitudinal mixing model for the tangential components. The purpose of the present study is to verify and validate the model used by the CYCLO code and to show practical applications of the use of CFD techniques. In order to verify and validate the code, numerical results were compared with experimental data for gas and gas-solid flows. As practical examples of application of CFD techniques, the code was used to the analysis and design of industrial cyclones / Doutorado / Desenvolvimento de Processos Químicos / Doutor em Engenharia Química
2

Modélisation du transport des nappes d'hydrocarbures en zone continentale et estuarienne / Numerical modelling of oil spill drifts in continental and estuarine waters

Goeury, Cédric 22 October 2012 (has links)
L'application de la Directive Cadre sur l'Eau et l'obligation de surveillance de la qualité d'eau pour la consommation humaine et les activités récréatives ou industrielles, telles que la production d'eau potable, entraînent une forte demande pour des systèmes d'évaluation et de suivi de la qualité de l'eau. Le projet de recherche MIGR'HYCAR (http://www.migrhycar.com) a donc été mis en place pour répondre à un besoin opérationnel et à un défaut d'outils d'aide à la décision adaptés face aux déversements d'hydrocarbures en eaux continentales (rivières, lacs et estuaires) qui représente plus de 50% des déversements accidentels en France. Au cours du projet de recherche MIGR'HYCAR, un modèle mathématique de dérive de nappe d'hydrocarbures, composé d'un modèle lagrangien couplé à un modèle eulérien, a été développé dans la plate-forme hydro-informatique TELEMAC (http://www.opentelemac.org). Le modèle lagrangien décrit le mouvement de la nappe en surface en considérant celle-ci comme un ensemble de particules. Ainsi le modèle développé est capable de modéliser les principaux phénomènes agissant sur une nappe d'hydrocarbures une fois celle-ci déversée : convection, diffusion, échouage, re-largage, étalement, évaporation, dissolution et volatilisation. Bien que le phénomène de dissolution ne concerne qu'un très faible volume d'hydrocarbures, ce processus peut avoir des conséquences importantes du point de vue de la toxicité. Afin de suivre l'évolution du pétrole dissous, un modèle eulérien de suivi de traceurs a été adopté. La quantité de traceur dépend directement de la masse dissoute des particules lagrangiennes. Cette approche permet le suivi des hydrocarbures dissous dans la colonne d'eau. Des cinétiques effectuées en laboratoire ont pour but la calibration du modèle numérique. En complément de cas tests issus de la littérature et de cas réels, des résultats expérimentaux issus d'expérimentations effectuées en canal d'essai doivent permettre de vérifier et valider la qualité des simulations numériques sur des situations où les conditions ne sont que partiellement contrôlées / The application of the European Water Framework Directive on water quality for human consumption and industrial activities creates a need for water quality assessment and monitoring systems. The MIGR'HYCAR research project (http://www.migrhycar.com) was initiated to provide decisional tools for risks connected to oil spills in continental waters (rivers, lakes and estuaries), which represent more than 50% of accidental spills in France. Within the framework of this project, a new numerical oil spill model has been developed, as part of the Telemac hydro-informatics system (see: (http://www.opentelemac.org), by combining Lagrangian and Eulerian methods. The Lagrangian model describes the transport of an oil spill near the free surface. The oil spill model enables to simulate the main processes driving oil plumes: advection, diffusion, oil beaching, oil re-floating, evaporation, dissolution, spreading and volatilization. Though generally considered as a minor process, dissolution is important from the point of view of toxicity. To model dissolved oil in water, an Eulerian advection-diffusion model is used. The fraction of dissolved oil is represented by a passive tracer. This approach is able to follow dissolved hydrocarbons in the water column. Laboratory experiments were conducted to characterise the numerous kinetics of the processes listed above. In addition, meso-scale dynamic experiments in artificial channels and test cases derived from the literature are used to validate the numerical model
3

A Polydispersed Gaussian-Moment Model for Polythermal, Evaporating, and Turbulent Multiphase Flow Applications

Allard, Benoit 06 April 2023 (has links)
A novel higher-order moment-closure method is applied for the Eulerian treatment of gas-particle multiphase flows characterized by a dilute polydisperse and polythermal particle phase. Based upon the polydisperse Gaussian-moment model (PGM) framework, the proposed model is derived by applying an entropy-maximization moment-closure formulation to the transport equation of the particle-number density function, which is equivalent to the Williams-Boltzmann equation for droplet sprays. The resulting set of first-order robustly-hyperbolic balance laws include a direct treatment for local higher-order statistics such as co-variances between particle distinguishable properties (i.e., diameter and temperature) and particle velocity. Leveraging the additional distinguishing variables, classical hydrodynamic droplet evaporation theory is considered to describe unsteady droplet vaporization. Further, studying turbulent multiphase flow theory, a first-order hyperbolicity maintaining approximation to turbulent flow diffusion-inertia effects is proposed. Investigations into the predictive capabilities of the model are evaluated relative to Lagrangian-based solutions for a range of flows, including aerosol dispersion and fuel-sprays. Further, the model is implemented in a massively parallel discontinuous-Galerkin framework. Validation of the proposed turbulence coupling model is subsequently performed against experimental data, and a qualitative analysis of the model is given for a qualitative liquid fuel-spray problem.

Page generated in 0.0765 seconds