Spelling suggestions: "subject:"eumitria"" "subject:"dumitrica""
1 |
Phylogenetic Studies in Usnea (Parmeliaceae) and Allied GeneraArticus, Kristina January 2004 (has links)
This thesis deals with the phylogeny of the lichen genus Usnea (Parmeliaceae, Ascomycetes). The relationships and the morphological variation among Usnea species has been studied, as well as the relationship of Usnea to allied genera. Two species, U. florida and U. subfloridana, which earlier were regarded to form two separate species have been synonymized. In an analysis based on sequence data these two taxa formed a monophyletic group of intermixed specimens. Usnea florida and U. subfloridana have earlier been regarded to form a species pair, but the species pairs concept cannot be applied in this case. The morphological characters traditionally used for species recognition of a number of European Usnea species have been analyzed regarding their reliability. The evolution and distribution of the morphological characters was studied in relation to a phylogeny based on sequence data. Most characters proved to be homoplastic in relation to the phylogeny. Few characters were consistent in a clade, and the same character could be inconsistent in another clade. Therefore a combination of several characters is recommended for species recognition. The relationship of Neuropogon to Usnea was investigated based on sequence data. Neuropogon showed to be closely related to Usnea subg. Usnea. The subgenera Eumitria and Dolichousnea formed the sister group to the clade comprising subg. Usnea and Neuropogon. Usnea is paraphyletic in this investigation. Eumitria is treated as a genus and the subgenus Dolichousnea is elevated to generic rank. The position of Usnea, Neuropogon, Eumitria, and Dolichousnea in the family Parmeliaceae was investigated based on a phylogeny obtained by sequence data. Protousnea probably forms the sister group to the clade of Usnea, Neuropogon, Eumitria, and Dolichousnea. Several monophyletic groups in the family Parmeliaceae were identified.
|
Page generated in 0.0376 seconds