Spelling suggestions: "subject:"eutrophication -- control"" "subject:"eutrophication -- coontrol""
1 |
Site-specific environmental risk assessment for phosphorus runoffLukhele, Nomagugu Precious January 2014 (has links)
Thesis (MSc. Agriculture (Soil Science)) -- University of Limpopo, 2014 / Phosphorus (P) runoff from agricultural sites and the subsequent loading into surface water
bodies contribute to eutrophication. Environmental concerns associated with P loading in
soil have motivated the need for the development of a proper tool that will allow farmers to
identify agricultural areas or management practices that have the greatest potential to
accelerate eutrophication. The objective of the study was to determine the spatial variability
of soil test P, soil loss potential of the farm, P application rate and methods, and map P runoff
risk across the field. This study was conducted in Vierfontein Boerdery in Kriel,
Mpumalanga province, South Africa (longitude 29.11258833 and latitude -26.27104340). The
field was under dryland cultivation and planted to yellow maize that was rotated with
soybeans. Soil samples were taken at georeferenced locations in a 100 x 100 m grid for soil
analysis. Spatial layers of soil P distribution, soil loss potential as well as application rate and
method were created in ArcGIS software. These layers were used as input factors in a P
index model to identify areas in the farm that are vulnerable to P runoff. Results indicated a
variation in soil test P. Although soil test P variation was not statistically different at P≤0.05,
variation had both agronomic and environmental implications. This variation could be
attributed to differences in site-specific conditions and management practices. Furthermore,
soil loss potential across the study site predicted by the Revised Universal Soil Loss
Equation (RUSLE) showed variation with a range of 3-15 tons/ha/yr. This variation was
attributed to differences in topographic variations in the study site. There is a need for best
management practices that control soil erosion to minimize P runoff into water bodies.
KEYWORDS: Eutrophication, Geographic Information System, Phosphorus best
management practises, Phosphorus runoff index, Soil erosion, Site-specific management.
|
2 |
Medidas de mitigação para controle e manejo das florações de cianobactérias em um sistema raso tropicalMiranda, Marcela Aparecida Campos Neves 30 June 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-03-27T11:30:41Z
No. of bitstreams: 0 / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-03-27T13:52:08Z (GMT) No. of bitstreams: 0 / Made available in DSpace on 2018-03-27T13:52:08Z (GMT). No. of bitstreams: 0
Previous issue date: 2017-06-30 / Florações de cianobactérias são consequência principalmente da eutrofização de
ambientes aquáticos que afeta a qualidade e compromete o uso da água para diversas finalidades. A restauração de sistemas aquáticos eutrofizados é um dos principais desafios da limnologia atual. Nosso objetivo foi identificar as principais causas do processo de eutrofização e ocorrência de florações de cianobactérias e testar a eficácia e aplicabilidade do uso combinado de coagulantes e adsorventes de P em fase sólida no controle da eutrofização e florações em um lago tropical raso. O estudo foi conduzido no lago do Museu Mariano Procópio, localizado em
Juiz de Fora – MG e dividido em quatro fases. As duas primeiras fases compreendem uma análise sistêmica do lago. Na primeira, buscou-se conhecer a dinâmica da comunidade fitoplanctônica a fim de entender a dominância de cianobactéria deste sistema. Na segunda, foram avaliados os aportes de fósforo (P) para o sistema. Na terceira fase foram realizados experimentos em laboratório, para verificar a eficácia de diferentes coagulantes e lastros para remoção de cianobactérias. E na quarta fase foram realizados experimentos em mesocosmos no lago, para testar o controle da eutrofização e florações de cianobactérias. A análise sistêmica mostrou dominância de diferentes espécies de cianobactérias e que as altas concentrações de nutrientes presentes do sistema vêm principalmente de contribuição externa. O uso combinado
de coagulantes e lastros foi eficiente para a remoção de biomassa de cianobactérias, porém foi dependente da espécie. Nos experimentos com mesocosmos, foi observada uma forte redução de Clorofila a (Chl a 85%) e fósforo total (TP 78%) (p <0,0010) em todos os tratamentos, porém estas reduções não se mantiveram ao longo do tempo. Para mitigar as florações de cianobactérias deste sistema, será necessário o controle das fontes externas de nutrientes e um ajuste na técnica de coagulante-lastro para manter a clorofila e o fósforo total em concentrações reduzidas por mais tempo. / Cyanobacterial Blooms are mainly a consequence of eutrophication of aquatic
environments that affect the water quality and compromise the use of water for various
purposes. The restoration of eutrophic aquatic systems is one of the main challenges of today's limnology. Our objective was to identify the main causes of the eutrophication process and the occurrence of cyanobacterial blooms in a shallow tropical lake, and to test the efficacy and applicability of the combined use of coagulants and adsorbents of P in solid phase for the control of eutrophication and cyanobacteria blooms in a tropical shallow system. The study was conducted in the lake of the Mariano Procópio Museum, located in Juiz de Fora - MG and divided into four phases. The first two phases comprised a systemic analysis of the lake. The first one sought to know the dynamics of the phytoplankton community and to understand the causes of the cyanobacteria dominance in this system. In the second one, the main contributions of phosphorus to the system and the general balance of P were evaluated. In the third phase,
laboratory experiments were carried out to evaluate the efficacy of different coagulants and ballasts for the removal of cyanobacteria. Last, in the fourth phase experiments were carried out in mesocosmos in the lake to test the control of eutrophication and cyanobacterial blooms. The systemic analysis showed the dominance of different species of cyanobacteria and that the high concentrations of nutrients present in the system come mainly from external contribution. The combined use of coagulants and ballasts was efficient for the removal of cyanobacteria biomass, but it is dependent on the species pool. In the experiments with mesocosms, a strong reductions of chloropyll a (Chl a) 85% and total phosphorus (TP) 78% (p < 0.001) were observed in all treatments, however these reductions were not lasting. To mitigate the
cyanobacterial blooms of this system, it will be necessary to control the external sources of nutrients and also an adjustment in the coagulant-ballast technique to keep Chl a l and TP in reduced concentrations for longer time.
|
3 |
NITROGEN AND PHOSPHORUS CYCLING IN MIDWESTERN AGRICULTURAL WETLANDS IN RESPONSE TO ALTERED HYDROLOGIC REGIMESSmith, Allyson Shaidnagle 16 March 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The transfer of nutrients from US Midwest croplands into surface waters causes eutrophication and a decline in water quality. Temporary retention of nutrient-rich runoff in constructed wetlands can help mitigate these negative impacts through physical entrapment and biological transformation of nitrogen (N) and phosphorus (P). However, with the expectation that wet-dry periods will be more frequent in the region, there is a need to better understand the mechanisms that control nutrient retention and release in US Midwest wetlands constructed on former croplands. In this study, soil cores (30 cm long, 20 cm diam) were collected from two constructed wetlands (4 and 8-yr old), and the surface (0-20 cm) and subsurface (40-60 cm) layers of a cropland where a constructed wetland will be constructed in the future. Soil cores were subjected to either a moist or a dry treatment for 5 weeks, and then flooded with stream water (water depth 6 cm). The flux of nutrients, N2O, cations, and variation in floodwater chemistry (pH and ORP) were monitored for another 5 week period. Porewater was tested during the final 3 weeks of the experiment. Nitrate (0.1-130 mg N m-2 d-1) and inorganic P (Pi) fluxes (0.09-2.9 mg P m-2 d-1) were significantly higher in the dry treatment cores. Regardless of site, the dry treatment also resulted in higher floodwater NO3- concentrations suggesting organic matter mineralization and mineral N build up during the drying phase. However, this initial NO3- release was rapidly denitrified as indicated by the sharp increase in N2O production during that period. In contrast to N, the release of Pi was significantly higher in cores from the cropland. Soil at these sites had higher water extractable Pi and total P. Contrary to the study hypothesis and the results of previous studies, Pi concentration in floodwater and porewater was not correlated with dissolved Fe suggesting that reductive dissolution was not the dominant process controlling P release in US Midwest mineral soils developed from calcareous glacial till. Rather, variation in Ca2+ concentration and its relationship with Pi suggest that dissolution of Ca-containing minerals may be more important and should be the focus of future studies examining the geochemistry of P in these constructed wetlands.
|
4 |
Plant growth and nutrient removal in simulated secondary-treated municipal wastewater in wetland microcosmosZhang, Zhenhua January 2008 (has links)
[Truncated abstract] The use of constructed wetlands for tertiary purification of municipal wastewater has received increasing attention around the world because direct discharge of secondary-treated municipal wastewater to water bodies has caused eutrophication. Plant species selection and vegetation management may enhance nutrient removal efficiency in constructed wetlands. However, there is a lack of knowledge on the relations between plant growth and nutrient removal efficiency in constructed wetlands. The objective of this study is to better understand how plant growth and resource allocation are influenced by nutrients in wastewater and how nutrient removal efficiencies are affected by plant species and vegetation management. The preliminary experiment was conducted to select macrophytes, especially ornamental species, to grow in the wastewater in the wetland microcosms. Ten plant species, comprising six ornamental species: Alocasia macrorrhiza, Canna indica, Iris louisiana, Lythrum sp., Zantedeschia aethiopica, Zantedeschia sp., and four sedge species: Baumea articulate, Baumea juncea, Carex tereticaulis and Schoenoplectus validus, were planted in the wetland microcosms and fed a simulated wastewater solution in the concentrations similar to the secondary-treated municipal wastewater. C. indica has shown vigorous and healthy growth, and a relatively high potential of rooting-zone aeration and nutrient removal efficiency. B. articulata and S. validus also showed relatively high nutrient removal efficiency. ... The high nutrient availability and optimum N/P ratio were required for stimulating plant growth, resulting in allocation of more resources to above-ground tissues compared to below-ground parts, and enhancing nutrient removal efficiency. Nutrient removal efficiencies were significantly influenced by growth of C. indica and S. validus, nutrient loading rates and N/P ratios in the wastewater. The nutrient uptake kinetics of C. indica and S. validus were investigated to elucidate the differences in nutrient uptake between species. Wetland plant species have shown differential nutrient uptake efficiency and different preferences for inorganic N source, with C. indica preferring NO3-N and S. validus preferring NH4-N. C. indica had greater capacity than S. validus to take up PO4-P when the concentration of PO4-P in the solution was relatively low, whereas S. validus was more capable than C. indica to take up NO3-N when the concentration of NO3-N in the solution was relatively low. The PO4-P uptake capacity was higher in younger than older plants. Overall, the study has suggested that different plant species have differential capacity to take up nutrients. In addition to nutrient uptake, plants have significant other roles in terms of nutrient removal from the wastewater (such as leaking oxygen into the rhizosphere in which oxidation of substances like ammonia can occur). The properly high nutrient availability and optimum N/P ratio are required to stimulate the plant growth, resulting in enhancing the treatment performance in the wetlands. These findings have important implications for improving our ability to engineer ecological solutions to the problems associated with nutrient-rich wastewater.
|
5 |
Analysis and prediction of chemical treatment cost of potable water in the Upper and Middle Vaal water management areas.Gebremedhin, Samuel Kahsai. January 2009 (has links)
This study is a component of a research project on the economic costs of eutrophication in the Vaal River system. Its objective is to investigate the relationship between raw water quality and the chemical costs of producing potable water at two water treatment plants: Zuikerbosch Station #2 (owned by Rand Water) in the Upper Vaal Water Management Area (UVWMA), and Balkfontein (owned by Sedibeng Water) in the Middle Vaal Water Management Area (MVWMA). Time series data on raw water quality and chemical dosages used to treat raw water were obtained for Zuikerbosch Station #2 (hereafter referred to as Zuikerbosch) for the period November 2004 – October 2006 and
for Balkfontein for the period January 2004 to December 2006. Descriptive statistics reveal that raw water in the Vaal River is of a poorer quality at Balkfontein compared to that at Zuikerbosch. Furthermore, the actual real chemical water treatment costs (measured in 2006 ZAR) averaged R89.90 per megalitre at Zuikerbosch and R126.31 at Balkfontein, indicating that the chemical water treatment costs of producing potable water tend to increase as raw water quality declines. Collinearity among water quality (WQ) variables at both water treatment plants was analysed using Principal Component Analysis (PCA). The dimensions of water quality identified in the analysis are similar to those reported in Pieterse and van Vuuren’s (1997) study of the Vaal River. For both water treatment plants, Ordinary Least Squares (OLS) regression was used to identify the relationship between real chemical costs of water treatment and the dimensions of water quality identified through the respective Principal Components Analyses. The estimated regression models account for over 50.2% and 34.7% of
variation in real chemical water treatment costs at Zuikerbosch and Balkfontein,
respectively. The coefficient estimated for PC1 at Zuikerbosch is statistically significant at the 1% level of probability with high negative loadings of total alkalinity and turbidity. Increases in the levels of total alkalinity and turbidity in raw water treated at Zuikerbosch is negatively related to the chemical costs of water treatment. An increased total alkalinity level was found to reduce the chemical costs of treating potable water. PC2 is statistically the most important variable in the estimated explanatory model for Balkfontein. The estimated regression coefficient for PC2 is statistically significant at the 5% level of probability. The estimated relationship between chemical water treatment costs and PC2 shows that there is a positive relationship between the raw water temperature and chemical water treatment costs. However, increases in the levels of chlorophyll and pH in raw water treated at Balkfontein is negatively related to the chemical costs of water treatment. Total hardness, magnesium, calcium, sulphate,
conductivity, and chloride, being the highest positive loadings in PC1, relate negatively to the chemical cost of treating water. For predictive rather than explanatory purposes, a partial adjustment regression model was estimated for each of the two water treatment plants. Using this model, real chemical water treatment costs were specified as a function of real chemical water treatment costs in the previous time period, and of raw water quality variables in the current period. The R2 statistics for the two regression models were 61.4% using the data for Zuikerbosch and 59.9% using the data for Balkfontein, suggesting that both models have reasonable levels of predictive power. The chemical cost of water treatment for Zuikerbosch and Balkfontein are predicted at R96.25 and R90.74 per megalitre per day respectively. If raw water nitrate in the UVWMA increases by 1% per megalitre a day while other factors remain constant, chemical water
treatment costs at Zuikerbosch can be expected to increase by 0.297% per megalitre and the cost accompanied this change is (R0.285*1998ML*365days) R207,841.95 provided that Zuikerbosch treats an average of 1998 megalitres per day. Likewise, if Zuikerbosch maintains its daily average operating capacity and is able to maintain an optimal level of total alkalinity in UVWMA, the estimated saving on chemical water treatment cost will be R150.063.78 per annum. At Balkfontein, chemical water treatment cost is expected to increase on average by 0.346% per megalitre per day for a 1% per megalitre per day increase in the level of chlorophyll-a, and the cost accompanied this change is R41,128.20 per annum. The prediction also shows a 2.077% per megalitre per day increase chemical water treatment cost for a 1% increase in turbidity and this accompanied with a chemical water treatment cost of R 249,003 per annum, provided that Balkfontein operates at its full capacity (i.e., 360 megalitres per day). / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
|
Page generated in 0.0956 seconds