• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Máquinas de vetores suporte usando o algoritmo evolução diferencial com busca local para classificação de dados

COSME, R. C. 30 January 2012 (has links)
Made available in DSpace on 2016-08-29T15:33:13Z (GMT). No. of bitstreams: 1 tese_4083_.pdf: 853634 bytes, checksum: 128833f0f7dbbf4105fe8e92f379f1ab (MD5) Previous issue date: 2012-01-30 / Mineração de dados é uma área chave para diversos campos da ciência e engenharia. Neste contexto, um método de aprendizado estatístico, conhecido como máquinas de vetores suporte tem se apresentado como um método promissor para solucionar classificação de dados. Geralmente, o problema de máquinas de vetores suporte (inglês: Support Vector Machines - SVM) é formulado como um problema de otimização não-linear sujeito a restrições. Técnicas de otimização convencionais que utilizam a abordagem Lagrangiana são usadas para solucionar este tipo de problema. No caso de classificação de dados ruidosos as técnicas convencionais apresentam deterioração de desempenho, já que o problema de otimização resultante é multidimensional e pode apresentar muitos mínimos locais. Neste trabalho, é proposto o algoritmo Evolução Diferencial combinado com uma técnica de busca local, uma hibridização de busca tabu com o método Nelder-Mead, para encontrar os parâmetros ótimos dos classificadores SVM aplicados a dados ruidosos.

Page generated in 0.0363 seconds