Spelling suggestions: "subject:"evolutionary algorithms"" "subject:"evolutionary a.lgorithms""
61 |
Vision-based Recognition of Human Behaviour for Intelligent EnvironmentsChaaraoui, Alexandros Andre 20 January 2014 (has links)
A critical requirement for achieving ubiquity of artificial intelligence is to provide intelligent environments with the ability to recognize and understand human behaviour. If this is achieved, proactive interaction can occur and, more interestingly, a great variety of services can be developed. In this thesis we aim to support the development of ambient-assisted living services with advances in human behaviour analysis. Specifically, visual data analysis is considered in order to detect and understand human activity at home. As part of an intelligent monitoring system, single- and multi-view recognition of human actions is performed, along several optimizations and extensions. The present work may pave the way for more advanced human behaviour analysis techniques, such as the recognition of activities of daily living, personal routines and abnormal behaviour detection.
|
62 |
Control System Design Using Evolutionary Algorithms for Autonomous Shipboard Recovery of Unmanned Aerial VehiclesKhantsis, Sergey, s3007192@student.rmit.edu.au January 2006 (has links)
The capability of autonomous operation of ship-based Unmanned Aerial Vehicles (UAVs) in extreme sea conditions would greatly extend the usefulness of these aircraft for both military and civilian maritime purposes. Maritime operations are often associated with Vertical Take-Off and Landing (VTOL) procedures, even though the advantages of conventional fixed-wing aircraft over VTOL aircraft in terms of flight speed, range and endurance are well known. In this work, current methods of shipboard recovery are analysed and the problems associated with recovery in adverse weather conditions are identified. Based on this analysis, a novel recovery method is proposed. This method, named Cable Hook Recovery, is intended to recover small to medium-size fixed-wing UAVs on frigate-size vessels. It is expected to have greater operational capabilities than the Recovery Net technique, which is currently the most widely employed method of recovery for similar class of UAVs, potentially providing safe recovery even in very rough sea and allowing the choice of approach directions. The recovery method is supported by the development of a UAV controller that realises the most demanding stage of recovery, the final approach. The controller provides both flight control and guidance strategy that allow fully autonomous recovery of a fixed-wing UAV. The development process involves extensive use of specially tailored Evolutionary Algorithms and represents the major contribution of this work. The Evolutionary Design algorithm developed in this work combines the power of Evolutionary Strategies and Genetic Programming, enabling automatic evolution of both the structure and parameters of the controller. The controller is evolved using a fully coupled nonlinear six-degree-of-freedom UAV model, making linearisation and trimming of the model unnecessary. The developed algorithm is applied to both flight control and guidance problems with several variations, from optimisation of a routine PID controller to automatic control laws synthesis where no a priori data available. It is demonstrated that Evolutionary Design is capable of not only optimising, but also solving automatically the real-world problems, producing human-competitive solutions. The designed UAV controller has been tested comprehensively for both performance and robustness in a nonlinear simulation environment and has been found to allow the aircraft to be recovered in the presence of both large external disturbances and uncertainty in the simulation models.
|
63 |
Rotationally Invariant Techniques for Handling Parameter Interactions in Evolutionary Multi-Objective OptimizationIorio, Antony William, iantony@gmail.com January 2008 (has links)
In traditional optimization approaches the interaction of parameters associated with a problem is not a significant issue, but in the domain of Evolutionary Multi-Objective Optimization (EMOO) traditional genetic algorithm approaches have difficulties in optimizing problems with parameter interactions. Parameter interactions can be introduced when the search space is rotated. Genetic algorithms are referred to as being not rotationally invariant because their behavior changes depending on the orientation of the search space. Many empirical studies in single and multi-objective evolutionary optimization are done with respect to test problems which do not have parameter interactions. Such studies provide a favorably biased indication of genetic algorithm performance. This motivates the first aspect of our work; the improvement of the testing of EMOO algorithms with respect to the aforementioned difficulties that genetic algorithms experience in the presence of para meter interactions. To this end, we examine how EMOO algorithms can be assessed when problems are subject to an arbitrarily uniform degree of parameter interactions. We establish a theoretical basis for parameter interactions and how they can be measured. Furthermore, we ask the question of what difficulties a multi-objective genetic algorithm experiences on optimization problems exhibiting parameter interactions. We also ask how these difficulties can be overcome in order to efficiently find the Pareto-optimal front on such problems. Existing multi-objective test problems in the literature typically introduce parameter interactions by altering the fitness landscape, which is undesirable. We propose a new suite of test problems that exhibit parameter interactions through a rotation of the decision space, without altering the fitness landscape. In addition, we compare the performance of a number of recombination operators on these test problems. The second aspect of this work is concerned with developing an efficient multi-objective optimization algorithm which works well on problems with parameter interactions. We investigate how an evolutionary algorithm can be made more efficient on multi-objective problems with parameter interactions by developing four novel rotationally invariant differential evolution approaches. We also ask whether the proposed approaches are competitive in comparison with a state-of-the-art EMOO algorithm. We propose several differential evolution approaches incorporating directional information from the multi-objective search space in order to accelerate and direct the search. Experimental results indicate that dramatic improvements in efficiency can be achieved by directing the search towards points which are more dominant and more diverse. We also address the important issue of diversity loss in rotationally invariant vector-wise differential evolution. Being able to generate diverse solutions is critically important in order to avoid stagnation. In order to address this issue, one of the directed approaches that we examine incorporates a novel sampling scheme around better individuals in the search space. This variant is able to perform exceptionally well on the test problems with much less computational cost and scales to very high decision space dimensions even in the presence of parameter interactions.
|
64 |
Application of Multiobjective Optimization in Chemical Engineering Design and OperationFettaka, Salim 24 August 2012 (has links)
The purpose of this research project is the design and optimization of complex chemical engineering problems, by employing evolutionary algorithms (EAs). EAs are optimization techniques which mimic the principles of genetics and natural selection. Given their population-based approach, EAs are well suited for solving multiobjective optimization problems (MOOPs) to determine Pareto-optimal solutions. The Pareto front refers to the set of non-dominated solutions which highlight trade-offs among the different objectives. A broad range of applications have been studied, all of which are drawn from the chemical engineering field. The design of an industrial packed bed styrene reactor is initially studied with the goal of maximizing the productivity, yield and selectivity of styrene. The dual population evolutionary algorithm (DPEA) was used to circumscribe the Pareto domain of two and three objective optimization case studies for three different configurations of the reactor: adiabatic, steam-injected and isothermal. The Pareto domains were then ranked using the net flow method (NFM), a ranking algorithm that incorporates the knowledge and preferences of an expert into the optimization routine. Next, a multiobjective optimization of the heat transfer area and pumping power of a shell-and-tube heat exchanger is considered to provide the designer with multiple Pareto-optimal solutions which capture the trade-off between the two objectives. The optimization was performed using the fast and elitist non-dominated sorting genetic algorithm (NSGA-II) on two case studies from the open literature. The algorithm was also used to determine the impact of using discrete standard values of the tube length, diameter and thickness rather than using continuous values to obtain the optimal heat transfer area and pumping power. In addition, a new hybrid algorithm called the FP-NSGA-II, is developed in this thesis by combining a front prediction algorithm with the fast and elitist non-dominated sorting genetic algorithm-II (NSGA-II). Due to the significant computational time of evaluating objective functions in real life engineering problems, the aim of this hybrid approach is to better approximate the Pareto front of difficult constrained and unconstrained problems while keeping the computational cost similar to NSGA-II. The new algorithm is tested on benchmark problems from the literature and on a heat exchanger network problem.
|
65 |
Investigation of service selection algorithms for grid servicesGuha, Tapashree 15 September 2009
Grid computing has emerged as a global platform to support organizations for coordinated sharing of distributed data, applications, and processes. Additionally, Grid computing has also leveraged web services to define standard interfaces for Grid services adopting the service-oriented view. Consequently, there have been significant efforts to enable applications capable of tackling computationally intensive problems as services on the Grid. In order to ensure that the available services are assigned to the high volume of incoming requests efficiently, it is important to have a robust service selection algorithm. The selection algorithm should not only increase access to the distributed services, promoting operational flexibility and collaboration, but should also allow service providers to scale efficiently to meet a variety of demands while adhering to certain current Quality of Service (QoS) standards. In this research, two service selection algorithms, namely the Particle Swarm Intelligence based Service Selection Algorithm (PSI Selection Algorithm) based on the Multiple Objective Particle Swarm Optimization algorithm using Crowding Distance technique, and the Constraint Satisfaction based Selection (CSS) algorithm, are proposed. The proposed selection algorithms are designed to achieve the following goals: handling large number of incoming requests simultaneously; achieving high match scores in the case of competitive matching of similar types of incoming requests; assigning each services efficiently to all the incoming requests; providing the service requesters the flexibility to provide multiple service selection criteria based on a QoS metric; selecting the appropriate services for the incoming requests within a reasonable time. Next, the two algorithms are verified by a standard assignment problem algorithm called the Munkres algorithm. The feasibility and the accuracy of the proposed algorithms are then tested using various evaluation methods. These evaluations are based on various real world scenarios to check the accuracy of the algorithm, which is primarily based on how closely the requests are being matched to the available services based on the QoS parameters provided by the requesters.
|
66 |
Opposition-Based Differential EvolutionRahnamayan, Shahryar 25 April 2007 (has links)
Evolutionary algorithms (EAs) are well-established techniques to approach those problems which for the classical optimization methods are difficult to solve. Tackling problems with mixed-type of variables, many local optima, undifferentiable or non-analytical functions are some examples to highlight the outstanding capabilities of the evolutionary algorithms. Among the various kinds of evolutionary algorithms, differential evolution (DE) is well known for its effectiveness and robustness. Many comparative studies confirm that the DE outperforms many other optimizers. Finding more accurate solution(s), in a shorter period of time for complex black-box problems, is still the main goal of all evolutionary algorithms. The opposition concept, on the other hand, has a very old history in philosophy, set theory, politics, sociology, and physics. But, there has not been any opposition-based contribution to optimization. In this thesis, firstly, the opposition-based optimization (OBO) is constituted. Secondly, its advantages are formally supported by establishing mathematical proofs. Thirdly, the opposition-based acceleration schemes, including opposition-based population initialization and generation jumping, are proposed. Fourthly, DE is selected as a parent algorithm to verify the acceleration effects of proposed schemes. Finally, a comprehensive set of well-known complex benchmark functions is employed to experimentally compare and analyze the algorithms. Results confirm that opposition-based DE (ODE) performs better than its parent (DE), in terms of both convergence speed and solution quality. The main claim of this thesis is not defeating DE, its numerous versions, or other optimizers, but to introduce a new notion into nonlinear continuous optimization via innovative metaheuristics, namely the notion of opposition. Although, ODE has been compared with six other optimizers and outperforms them overall. Furthermore, both presented experimental and mathematical results conform with each other and demonstrate that opposite points are more beneficial than pure random points for black-box problems; this fundamental knowledge can serve to accelerate other machine learning approaches as well (such as reinforcement learning and neural networks). And perhaps in future, it could replace the pure randomness with random-opposition model when there is no a priori knowledge about the solution/problem. Although, all conducted experiments utilize DE as a parent algorithm, the proposed schemes are defined at the population level and, hence, have an inherent potential to be utilized for acceleration of other DE extensions or even other population-based algorithms, such as genetic algorithms (GAs). Like many other newly introduced concepts, ODE and the proposed opposition-based schemes still require further studies to fully unravel their benefits, weaknesses, and limitations.
|
67 |
Opposition-Based Differential EvolutionRahnamayan, Shahryar 25 April 2007 (has links)
Evolutionary algorithms (EAs) are well-established techniques to approach those problems which for the classical optimization methods are difficult to solve. Tackling problems with mixed-type of variables, many local optima, undifferentiable or non-analytical functions are some examples to highlight the outstanding capabilities of the evolutionary algorithms. Among the various kinds of evolutionary algorithms, differential evolution (DE) is well known for its effectiveness and robustness. Many comparative studies confirm that the DE outperforms many other optimizers. Finding more accurate solution(s), in a shorter period of time for complex black-box problems, is still the main goal of all evolutionary algorithms. The opposition concept, on the other hand, has a very old history in philosophy, set theory, politics, sociology, and physics. But, there has not been any opposition-based contribution to optimization. In this thesis, firstly, the opposition-based optimization (OBO) is constituted. Secondly, its advantages are formally supported by establishing mathematical proofs. Thirdly, the opposition-based acceleration schemes, including opposition-based population initialization and generation jumping, are proposed. Fourthly, DE is selected as a parent algorithm to verify the acceleration effects of proposed schemes. Finally, a comprehensive set of well-known complex benchmark functions is employed to experimentally compare and analyze the algorithms. Results confirm that opposition-based DE (ODE) performs better than its parent (DE), in terms of both convergence speed and solution quality. The main claim of this thesis is not defeating DE, its numerous versions, or other optimizers, but to introduce a new notion into nonlinear continuous optimization via innovative metaheuristics, namely the notion of opposition. Although, ODE has been compared with six other optimizers and outperforms them overall. Furthermore, both presented experimental and mathematical results conform with each other and demonstrate that opposite points are more beneficial than pure random points for black-box problems; this fundamental knowledge can serve to accelerate other machine learning approaches as well (such as reinforcement learning and neural networks). And perhaps in future, it could replace the pure randomness with random-opposition model when there is no a priori knowledge about the solution/problem. Although, all conducted experiments utilize DE as a parent algorithm, the proposed schemes are defined at the population level and, hence, have an inherent potential to be utilized for acceleration of other DE extensions or even other population-based algorithms, such as genetic algorithms (GAs). Like many other newly introduced concepts, ODE and the proposed opposition-based schemes still require further studies to fully unravel their benefits, weaknesses, and limitations.
|
68 |
Investigation of service selection algorithms for grid servicesGuha, Tapashree 15 September 2009 (has links)
Grid computing has emerged as a global platform to support organizations for coordinated sharing of distributed data, applications, and processes. Additionally, Grid computing has also leveraged web services to define standard interfaces for Grid services adopting the service-oriented view. Consequently, there have been significant efforts to enable applications capable of tackling computationally intensive problems as services on the Grid. In order to ensure that the available services are assigned to the high volume of incoming requests efficiently, it is important to have a robust service selection algorithm. The selection algorithm should not only increase access to the distributed services, promoting operational flexibility and collaboration, but should also allow service providers to scale efficiently to meet a variety of demands while adhering to certain current Quality of Service (QoS) standards. In this research, two service selection algorithms, namely the Particle Swarm Intelligence based Service Selection Algorithm (PSI Selection Algorithm) based on the Multiple Objective Particle Swarm Optimization algorithm using Crowding Distance technique, and the Constraint Satisfaction based Selection (CSS) algorithm, are proposed. The proposed selection algorithms are designed to achieve the following goals: handling large number of incoming requests simultaneously; achieving high match scores in the case of competitive matching of similar types of incoming requests; assigning each services efficiently to all the incoming requests; providing the service requesters the flexibility to provide multiple service selection criteria based on a QoS metric; selecting the appropriate services for the incoming requests within a reasonable time. Next, the two algorithms are verified by a standard assignment problem algorithm called the Munkres algorithm. The feasibility and the accuracy of the proposed algorithms are then tested using various evaluation methods. These evaluations are based on various real world scenarios to check the accuracy of the algorithm, which is primarily based on how closely the requests are being matched to the available services based on the QoS parameters provided by the requesters.
|
69 |
Modeling And Analysis Of The Facility Layout ProblemKirkizoglu, Zeynep 01 July 2006 (has links) (PDF)
The facilities layout problem, which is an integral part of facilities design, aims to
spatially locate the production units within a facility subject to some design criteria
and area limitations, with one or multiple objectives. In this study, the layout
problem is reviewed in detail, with an emphasis on the dynamic environment it
operates in. Despite the fact that layouts within the context of changing
manufacturing requirements represent the problem better, the single period block
layout problem is observed to have remained worth analyzing.
In this thesis, a hybrid model that combines the strong aspects of the available
models in the literature is constructed for the single period block layout problem.
The LP relaxation of this model and the effect of adding valid inequalities to the
model are studied. A rounding heuristic based on the LP relaxation of the problem is
proposed and computational experimentation is made. Also, an evolutionary
algorithm scheme that uses the sequence pair representation is proposed. Three
mutation operators are developed to be used in this scheme. Preliminary test are
made for implementations of these operators and results are given.
|
70 |
An Evolutionary Algorithm For Multiple Criteria ProblemsSoylu, Banu 01 January 2007 (has links) (PDF)
In this thesis, we develop an evolutionary algorithm for approximating the Pareto frontier of multi-objective continuous and combinatorial optimization problems. The algorithm tries to evolve the population of solutions towards the Pareto frontier and distribute it over the frontier in order to maintain a well-spread representation. The fitness score of each solution is computed with a Tchebycheff distance function and non-dominating sorting approach. Each solution chooses its own favorable weights according to the Tchebycheff distance function. Some seed solutions at initial population and a crowding measure also help to achieve satisfactory results.
In order to test the performance of our evolutionary algorithm, we use some continuous and combinatorial problems. The continuous test problems taken from the literature have special difficulties that an evolutionary algorithm has to deal with. Experimental results of our algorithm on these problems are provided.
One of the combinatorial problems we address is the multi-objective knapsack problem. We carry out experiments on test data for this problem given in the literature.
We work on two bi-criteria p-hub location problems and propose an evolutionary algorithm to approximate the Pareto frontiers of these problems. We test the performance of our algorithm on Turkish Postal System (PTT) data set (TPDS), AP (Australian Post) and CAB (US Civil Aeronautics Board) data sets.
The main contribution of this thesis is in the field of developing a multi-objective evolutionary algorithm and applying it to a number of multi-objective continuous and combinatorial optimization problems.
|
Page generated in 0.1137 seconds