Spelling suggestions: "subject:"evolutionary csrstrategies"" "subject:"evolutionary bothstrategies""
11 |
Estimador de variações de tensão de curta duração em sistemas elétricos de potência utilizando estratégias evolutivas. / Estimate short duration voltage variation using evolutionary strategies.Guerra Zvietcovich, Wilingthon 19 September 2011 (has links)
Neste trabalho, é proposta uma metodologia para estimar o estado de um sistema elétrico de potência (SEPs) durante variações de tensão de curta duração (VTCDs) causadas por faltas elétricas nas linhas que compõem a rede elétrica avaliada. Para cumprir esta meta, são utilizados os valores registrados nos equipamentos de medição instalados nas redes elétricas. Na realidade, existem poucos equipamentos nas redes elétricas devido aos custos elevados dos medidores de qualidade de energia elétrica (QEE). Embora estes custos tenham diminuído nos últimos anos, ainda é inviável a utilização de um número suficiente de medidores para garantir a monitoração de toda a rede, por tornar-se muito oneroso. Esta realidade constitui um desafio para se desenvolver técnicas que permitam, a partir de um pequeno número de pontos de monitoração, determinar os locais de faltas e estimar os valores das VTCDs em todas as barras que compõem um sistema elétrico. Como contribuição à solução destes problemas, esta tese propõe a utilização do algoritmo denominado Estratégias Evolutivas (EEs), que integra a família dos Algoritmos Evolutivos. Tal algoritmo mostrou ser viável por sua facilidade de implementação e rapidez de resposta na busca de uma solução dentro de um vasto espaço de soluções. As EEs, nesta tese, são utilizadas para se determinar: o local de falta, tipo de falta e impedância de falta, que caracterizam um indivíduo, de forma que as tensões resultantes nas barras monitoradas sejam as mais próximas possíveis das medições realizadas. Para alcançar esse objetivo, inicialmente se constrói uma população inicial de indivíduos que representam alternativas de solução do problema. Em seguida, uma parte destes indivíduos será submetida a mutação e recombinação para então serem selecionados os indivíduos que sobreviverão na geração futura. Este processo iterativo é realizado até que se encontre uma solução o mais próximo da procurada. Cada indivíduo é avaliado através de função objetivo, que representa o erro quadrático entre os valores medidos e os valores calculados. Para este cálculo, é necessário simular um curto-circuito com as características do indivíduo avaliado com base em informações da rede bem como dos valores das tensões provenientes dos medidores. A partir da determinação das características da falta, é feita a estimação dos valores das tensões em toda a rede levando à avaliação das VTCDs. Uma vez atingido este objetivo, é possível, por exemplo, determinar indicadores de qualidade associados às VTCDs, como o SARFI (System Average RMS Frequency Index), determinar as áreas mais propensas a causar as VTCDs e elaborar planos de manutenção preventiva. Foram implementados dois algoritmos que calculam o número mínimo de medidores e os locais onde estes devem ser instalados. O primeiro algoritmo tem a finalidade de garantir o monitoramento de toda a rede em relação às VTCDs enquanto o segundo garante o menor erro de estimação de VTCDs nas barras onde não se têm medidores instalados. A referida metodologia pode ser aplicada em redes radiais ou em malha, sendo inicialmente aplicada em sistemas de pequeno porte (redes de 14 e 30 barras do IEEE) com intuito de verificar a capacidade do algoritmo. Foram então simuladas redes de maior complexidade, por meio de testes em redes de 57 barras e 118 barras do IEEE. Para avaliar a eficiência da metodologia desenvolvida foi feita uma comparação com outra metodologia de otimização baseada em Algoritmos Genéticos (AGs). / A methodology is herein proposed to estimate Short Duration Voltage Variation (SDVV) in electric power systems, caused by electrical faults. To attain this target, values recorded by measurement equipment in specific sites are used. In fact, there are few power quality meters installed in power networks, due to the high cost of such meters. Although these costs have decreased in recent years, the installation of a sufficient number of meters to ensure monitoring the entire network is still unfeasible. This reality poses a challenge to developing techniques that, with a small number of monitoring points, allow the determination of fault locations and estimation of SDVV values in specified buses. As contribution this thesis proposes an algorithm called Evolutionary Strategies (ESE), which integrates the group of evolutionary algorithms. This algorithm can be easily implemented and finds a solution within a wide solution space. The ESE determines the fault location, fault type and fault impedance, that characterize an individual, so that the resulting voltages on monitored buses are as close as possible to the measured ones. An initial population is generated as alternative solutions to the problem. Some of the individuals in the population will be submitted to mutation and recombination operators. Individuals are then selected to the future generation. An iterative process is carried out to determine a solution as close as possible to the desired one. Each individual is evaluated by the objective function, which represents the quadratic error between the measured and calculated values. This calculation is based on short circuit calculation related to the evaluated individual and from information of voltage values gathered from power quality meters. Voltage values in specific network buses can then be determined to monitor their corresponding SDVV values. This allows, for example, determining quality indicators associated to the SDVV, such as the System Average RMS Frequency Index (SARFI), to evaluate sensitive areas, i.e. which are prone to cause SDVVs and to develop plans for preventive maintenance. Two algorithms that calculate the minimum number of meters and their locations have been implemented. The first algorithm aims to ensure monitoring the entire network regarding SDVVs, while the second algorithm ensures the smallest error of SDVV estimation in buses where no meters are installed. This methodology can be applied to meshed or radial networks. It was initially implemented in small networks (IEEE 14 and 30 buses) with the purpose of verifying the ability of algorithm. In sequence the methodology was applied to more complex networks (IEEE 57 and 118 buses). To assess the efficiency of the methodology a comparison with other optimization methodology based on Genetic Algorithms (GA) was carried out.
|
12 |
Estimador de variações de tensão de curta duração em sistemas elétricos de potência utilizando estratégias evolutivas. / Estimate short duration voltage variation using evolutionary strategies.Wilingthon Guerra Zvietcovich 19 September 2011 (has links)
Neste trabalho, é proposta uma metodologia para estimar o estado de um sistema elétrico de potência (SEPs) durante variações de tensão de curta duração (VTCDs) causadas por faltas elétricas nas linhas que compõem a rede elétrica avaliada. Para cumprir esta meta, são utilizados os valores registrados nos equipamentos de medição instalados nas redes elétricas. Na realidade, existem poucos equipamentos nas redes elétricas devido aos custos elevados dos medidores de qualidade de energia elétrica (QEE). Embora estes custos tenham diminuído nos últimos anos, ainda é inviável a utilização de um número suficiente de medidores para garantir a monitoração de toda a rede, por tornar-se muito oneroso. Esta realidade constitui um desafio para se desenvolver técnicas que permitam, a partir de um pequeno número de pontos de monitoração, determinar os locais de faltas e estimar os valores das VTCDs em todas as barras que compõem um sistema elétrico. Como contribuição à solução destes problemas, esta tese propõe a utilização do algoritmo denominado Estratégias Evolutivas (EEs), que integra a família dos Algoritmos Evolutivos. Tal algoritmo mostrou ser viável por sua facilidade de implementação e rapidez de resposta na busca de uma solução dentro de um vasto espaço de soluções. As EEs, nesta tese, são utilizadas para se determinar: o local de falta, tipo de falta e impedância de falta, que caracterizam um indivíduo, de forma que as tensões resultantes nas barras monitoradas sejam as mais próximas possíveis das medições realizadas. Para alcançar esse objetivo, inicialmente se constrói uma população inicial de indivíduos que representam alternativas de solução do problema. Em seguida, uma parte destes indivíduos será submetida a mutação e recombinação para então serem selecionados os indivíduos que sobreviverão na geração futura. Este processo iterativo é realizado até que se encontre uma solução o mais próximo da procurada. Cada indivíduo é avaliado através de função objetivo, que representa o erro quadrático entre os valores medidos e os valores calculados. Para este cálculo, é necessário simular um curto-circuito com as características do indivíduo avaliado com base em informações da rede bem como dos valores das tensões provenientes dos medidores. A partir da determinação das características da falta, é feita a estimação dos valores das tensões em toda a rede levando à avaliação das VTCDs. Uma vez atingido este objetivo, é possível, por exemplo, determinar indicadores de qualidade associados às VTCDs, como o SARFI (System Average RMS Frequency Index), determinar as áreas mais propensas a causar as VTCDs e elaborar planos de manutenção preventiva. Foram implementados dois algoritmos que calculam o número mínimo de medidores e os locais onde estes devem ser instalados. O primeiro algoritmo tem a finalidade de garantir o monitoramento de toda a rede em relação às VTCDs enquanto o segundo garante o menor erro de estimação de VTCDs nas barras onde não se têm medidores instalados. A referida metodologia pode ser aplicada em redes radiais ou em malha, sendo inicialmente aplicada em sistemas de pequeno porte (redes de 14 e 30 barras do IEEE) com intuito de verificar a capacidade do algoritmo. Foram então simuladas redes de maior complexidade, por meio de testes em redes de 57 barras e 118 barras do IEEE. Para avaliar a eficiência da metodologia desenvolvida foi feita uma comparação com outra metodologia de otimização baseada em Algoritmos Genéticos (AGs). / A methodology is herein proposed to estimate Short Duration Voltage Variation (SDVV) in electric power systems, caused by electrical faults. To attain this target, values recorded by measurement equipment in specific sites are used. In fact, there are few power quality meters installed in power networks, due to the high cost of such meters. Although these costs have decreased in recent years, the installation of a sufficient number of meters to ensure monitoring the entire network is still unfeasible. This reality poses a challenge to developing techniques that, with a small number of monitoring points, allow the determination of fault locations and estimation of SDVV values in specified buses. As contribution this thesis proposes an algorithm called Evolutionary Strategies (ESE), which integrates the group of evolutionary algorithms. This algorithm can be easily implemented and finds a solution within a wide solution space. The ESE determines the fault location, fault type and fault impedance, that characterize an individual, so that the resulting voltages on monitored buses are as close as possible to the measured ones. An initial population is generated as alternative solutions to the problem. Some of the individuals in the population will be submitted to mutation and recombination operators. Individuals are then selected to the future generation. An iterative process is carried out to determine a solution as close as possible to the desired one. Each individual is evaluated by the objective function, which represents the quadratic error between the measured and calculated values. This calculation is based on short circuit calculation related to the evaluated individual and from information of voltage values gathered from power quality meters. Voltage values in specific network buses can then be determined to monitor their corresponding SDVV values. This allows, for example, determining quality indicators associated to the SDVV, such as the System Average RMS Frequency Index (SARFI), to evaluate sensitive areas, i.e. which are prone to cause SDVVs and to develop plans for preventive maintenance. Two algorithms that calculate the minimum number of meters and their locations have been implemented. The first algorithm aims to ensure monitoring the entire network regarding SDVVs, while the second algorithm ensures the smallest error of SDVV estimation in buses where no meters are installed. This methodology can be applied to meshed or radial networks. It was initially implemented in small networks (IEEE 14 and 30 buses) with the purpose of verifying the ability of algorithm. In sequence the methodology was applied to more complex networks (IEEE 57 and 118 buses). To assess the efficiency of the methodology a comparison with other optimization methodology based on Genetic Algorithms (GA) was carried out.
|
13 |
Novas abordagens para segmentação de nuvens de pontos aplicadas à robótica autônoma e reconstrução 3D / New approaches for segmenting point clouds applied to autonomous robotics and 3D reconstructionSantos, Gilberto Antônio Marcon dos 12 August 2016 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-18T11:09:56Z
No. of bitstreams: 2
Dissertação - Gilberto Antônio Marcon dos Santos - 2016.pdf: 15378242 bytes, checksum: d10f5df08686b55ad63c406e648a2b8e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-18T11:12:10Z (GMT) No. of bitstreams: 2
Dissertação - Gilberto Antônio Marcon dos Santos - 2016.pdf: 15378242 bytes, checksum: d10f5df08686b55ad63c406e648a2b8e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-08-18T11:12:10Z (GMT). No. of bitstreams: 2
Dissertação - Gilberto Antônio Marcon dos Santos - 2016.pdf: 15378242 bytes, checksum: d10f5df08686b55ad63c406e648a2b8e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-08-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Depth sensing methods yield point clouds that represent neighboring surfaces. Interpreting
and extracting information from point clouds is an established field, full of yet unsolved
challenges. Classic image processing algorithms are not applicable or must be adapted
because the organized structure of 2D images is not available. This work presents three
contribution to the field of point cloud processing and segmentation. These contributions
are the results of investigations carried out at the Laboratory for Education and Innovation
in Automation – LEIA, aiming to advance the knowledges related to applying spacial
sensing to autonomous robotics. The first contribution consists of a new algorithm, based
on evolutionary methods, for extracting planes from point clouds. Based on the method
proposed by Bazargani, Mateus e Loja (2015), this contribution consists of adopting
evolutionary strategies in place of genetic algorithms making the process less sensitive to
user-defined parameters. The second contribution is a method for segmenting ground and
obstacles from point clouds for autonomous navigation, that utilizes the proposed plane
extraction algorithm. The use of a quadtree for adaptive area segmentation allows for
classifying points with high accuracy efficiently and with a time performance compatible
with low cost embedded devices. The third contribution is a variant of the proposed
segmentation method that is more noise tolerant and robust by incorporating a neural
classifier. The use of a neural classifier in place of simple thresholding makes the process
less sensitive to point cloud noise and faults, making it specially interesting for processing
point clouds obtained from real time stereo reconstruction methods. A through sensitivity,
accuracy, and efficiency analysis is presented for each algorithm. The dihedral angle
metric (angle between the detected plane and the reference polygons that share at least
one point) proposed by Bazargani, Mateus e Loja (2015) is used to quantify the plane
detection method accuracy. The ratio between the correctly classified points and the total
number of points is utilized as an accuracy metric for the ground segmentation methods.
Additionally, computing costs and execution times are considered and compared to the
main state-of-the-art methods. / Métodos de sensoriamento de profundidade produzem nuvens de pontos que representam
as superfícies vizinhas. Interpretar e extrair informações de nuvens de pontos é um campo
estabelecido e repleto de desafios ainda não superados. Algoritmos de processamento de
imagens clássicos não se aplicam ou têm de ser adaptados porque a estrutura organizada que
se poderia supor em imagens bidimensionais não se faz presente. Este trabalho apresenta
três contribuições ao campo de processamento e segmentação de nuvens de pontos. Tais
contribuições são resultados da investigação realizada no Laboratório para Educação e
Inovação em Automação – LEIA, com o fim de avançar os conhecimentos relacionados a
aplicações de sensoriamento espacial para robótica autônoma. A primeira contribuição
consiste de um novo algoritmo para extração de planos de nuvens de pontos, que se
baseia em métodos evolutivos. Partindo do método proposto por Bazargani, Mateus e
Loja (2015), esta contribuição consiste em utilizar estratégias evolucionárias no lugar
de algoritmos genéticos, de forma a tornar o processo menos sensível aos parâmetros
definidos pelo usuário. A segunda contribuição é um método para segmentação de piso
e obstáculos em nuvens de pontos para navegação autônoma, que utiliza o algoritmo
de extração de planos proposto. O uso de uma árvore quaternária para segmentação
adaptativa de área permite classificar os pontos com elevada taxa de acerto de forma
eficiente e com desempenho compatível com dispositivos embarcados de baixo custo. A
terceira contribuição é uma variação do método de segmentação proposto que se faz
mais robusta e tolerante a ruído através da agregação de um classificador neural. O uso
do classificador neural no lugar da limiarização simples torna o processo menos sensível
a ruídos e falhas nas nuvens de pontos, o tornando especialmente interessante para o
processamento de nuvens de pontos obtidas por métodos de reconstrução estéreo de tempo
real. Uma completa análise de sensibilidade, acurácia e eficiência é apresentada para cada
algoritmo. A métrica de ângulo diedral (ângulo entre os planos detectados e os polígonos
de referência que compartilham ao menos um ponto em comum) proposta por Bazargani,
Mateus e Loja (2015) é utilizada para quantificar a acurácia do método de detecção de
planos. A razão entre os pontos corretamente classificados e o número total de pontos é
utilizada como métrica de acurácia para os métodos de segmentação de piso. Também são
considerados os custos computacionais e o tempo de execução, comparados aos principais
métodos estado-da-arte.
|
Page generated in 0.0772 seconds