Spelling suggestions: "subject:"excitatory"" "subject:"excitator""
21 |
Unraveling the impact of IL1RAPL1 mutations on synapse formation : towards potential therapies for intellectual disability / Exploration de l’impact des mutations dans IL1RAPL1 sur la formation et la fonction des synapses : vers des thérapies potentielles pour la déficience intellectuelleRamos, Mariana 09 October 2015 (has links)
L’intégrité des synapses neuronales est primordiale pour le développement et le maintien des capacités cognitives. Des mutations dans des gènes codant pour des protéines synaptiques ont été trouvées chez des patients atteints de déficience intellectuelle (DI), qui est une maladie neurodéveloppementale ayant des conséquences sur les fonctions intellectuelles et adaptatives. Ce travail de thèse porte sur l’étude de l’un de ces gènes, IL1RAPL1, dont les mutations sont responsables d’une forme non-syndromique de DI liée au chromosome X, et sur le rôle de la protéine IL1RAPL1 dans la formation et le fonctionnement des synapses. IL1RAPL1 est une protéine trans-membranaire qui est localisée dans les synapses excitatrices où elle interagit avec les protéines post-synaptiques PSD-95, RhoGAP2 et Mcf2l. De plus, IL1RAPL1 interagit en trans- avec une protéine phosphatase présynaptique, PTPd, via son domaine extracellulaire. Nous avons étudié les conséquences fonctionnelles de deux nouvelles mutations qui affectent le domaine extracellulaire d’IL1RAPL1 chez des patients présentant une DI. Ces mutations conduisent soit à une diminution de l’expression de la protéine, soit à une réduction de l’interaction avec PTPd affectant ainsi la capacité d’IL1RAPL1 à induire la formation de synapses excitatrices. En absence d’IL1RAPL1, le nombre ou la fonction des synapses excitatrices est diminué, ce qui mène à un déséquilibre entre les transmissions synaptiques excitatrice et inhibitrice dans des régions spécifiques du cerveau. Dans le cas particulier de l’amygdale latérale, nous avons montré que ce déséquilibre conduit à des défauts de mémoire associative chez la souris déficiente en Il1rapl1. L’ensemble des résultats qui font partie de ce travail montre que l’interaction IL1RAPL1/PTPd est essentielle pour la formation des synapses et suggère que les déficits cognitifs des patients avec une mutation dans il1rapl1 proviennent du déséquilibre de la balance excitation/ inhibition. Ces observations ouvrent des perspectives thérapeutiques visant à rétablir cette balance dans les réseaux neuronaux affectés. / Preserving the integrity of neuronal synapses is important for the development and maintenance of cognitive capacities. Mutations on a growing number of genes coding for synaptic proteins are associated with intellectual disability (ID), a neurodevelopmental disease characterized by deficits in adaptive and intellectual functions. The present work is dedicated to the study of one of those genes, IL1RAPL1, and the role of its encoding protein in synapse formation and function. IL1RAPL1 is a trans-membrane protein that is localized at excitatory synapses, where it interacts with the postsynaptic proteins PSD-95, RhoGAP2 and Mcf2l. Moreover, the extracellular domain of IL1RAPL1 interacts trans-synaptically with the presynaptic phosphatase PTPd. We studied the functional consequences of two novel mutations identified in ID patients affecting this IL1RAPL1 domain. Those mutations lead either to a decrease of the protein expression or of its interaction with PTPd, affecting in both cases the IL1RAPL1-mediated excitatory synapse formation. In the absence of IL1RAPL1, the number or function of excitatory synapses is perturbed, leading to an imbalance of excitatory and inhibitory synaptic transmissions in specific brain circuits. In particular, we showed that this imbalance in the lateral amygdala results in associative memory deficits in mice lacking Il1rapl1. Altogether, the results included in this work show that IL1RAPL1/PTPd interaction is essential for synapse formation and suggest that the cognitive deficits in ID patients with mutations on IL1RAPL1 result from the imbalance of the excitatory and inhibitory transmission. These observations open therapeutic perspectives aiming to reestablish this balance in the affected neuronal circuits.
|
22 |
Unraveling the impact of IL1RAPL1 mutations on synapse formation : towards potential therapies for intellectual disability / Exploration de l’impact des mutations dans IL1RAPL1 sur la formation et la fonction des synapses : vers des thérapies potentielles pour la déficience intellectuelleRamos, Mariana 09 October 2015 (has links)
L’intégrité des synapses neuronales est primordiale pour le développement et le maintien des capacités cognitives. Des mutations dans des gènes codant pour des protéines synaptiques ont été trouvées chez des patients atteints de déficience intellectuelle (DI), qui est une maladie neurodéveloppementale ayant des conséquences sur les fonctions intellectuelles et adaptatives. Ce travail de thèse porte sur l’étude de l’un de ces gènes, IL1RAPL1, dont les mutations sont responsables d’une forme non-syndromique de DI liée au chromosome X, et sur le rôle de la protéine IL1RAPL1 dans la formation et le fonctionnement des synapses. IL1RAPL1 est une protéine trans-membranaire qui est localisée dans les synapses excitatrices où elle interagit avec les protéines post-synaptiques PSD-95, RhoGAP2 et Mcf2l. De plus, IL1RAPL1 interagit en trans- avec une protéine phosphatase présynaptique, PTPd, via son domaine extracellulaire. Nous avons étudié les conséquences fonctionnelles de deux nouvelles mutations qui affectent le domaine extracellulaire d’IL1RAPL1 chez des patients présentant une DI. Ces mutations conduisent soit à une diminution de l’expression de la protéine, soit à une réduction de l’interaction avec PTPd affectant ainsi la capacité d’IL1RAPL1 à induire la formation de synapses excitatrices. En absence d’IL1RAPL1, le nombre ou la fonction des synapses excitatrices est diminué, ce qui mène à un déséquilibre entre les transmissions synaptiques excitatrice et inhibitrice dans des régions spécifiques du cerveau. Dans le cas particulier de l’amygdale latérale, nous avons montré que ce déséquilibre conduit à des défauts de mémoire associative chez la souris déficiente en Il1rapl1. L’ensemble des résultats qui font partie de ce travail montre que l’interaction IL1RAPL1/PTPd est essentielle pour la formation des synapses et suggère que les déficits cognitifs des patients avec une mutation dans il1rapl1 proviennent du déséquilibre de la balance excitation/ inhibition. Ces observations ouvrent des perspectives thérapeutiques visant à rétablir cette balance dans les réseaux neuronaux affectés. / Preserving the integrity of neuronal synapses is important for the development and maintenance of cognitive capacities. Mutations on a growing number of genes coding for synaptic proteins are associated with intellectual disability (ID), a neurodevelopmental disease characterized by deficits in adaptive and intellectual functions. The present work is dedicated to the study of one of those genes, IL1RAPL1, and the role of its encoding protein in synapse formation and function. IL1RAPL1 is a trans-membrane protein that is localized at excitatory synapses, where it interacts with the postsynaptic proteins PSD-95, RhoGAP2 and Mcf2l. Moreover, the extracellular domain of IL1RAPL1 interacts trans-synaptically with the presynaptic phosphatase PTPd. We studied the functional consequences of two novel mutations identified in ID patients affecting this IL1RAPL1 domain. Those mutations lead either to a decrease of the protein expression or of its interaction with PTPd, affecting in both cases the IL1RAPL1-mediated excitatory synapse formation. In the absence of IL1RAPL1, the number or function of excitatory synapses is perturbed, leading to an imbalance of excitatory and inhibitory synaptic transmissions in specific brain circuits. In particular, we showed that this imbalance in the lateral amygdala results in associative memory deficits in mice lacking Il1rapl1. Altogether, the results included in this work show that IL1RAPL1/PTPd interaction is essential for synapse formation and suggest that the cognitive deficits in ID patients with mutations on IL1RAPL1 result from the imbalance of the excitatory and inhibitory transmission. These observations open therapeutic perspectives aiming to reestablish this balance in the affected neuronal circuits.
|
23 |
Unraveling the impact of IL1RAPL1 mutations on synapse formation : towards potential therapies for intellectual disability / Exploration de l’impact des mutations dans IL1RAPL1 sur la formation et la fonction des synapses : vers des thérapies potentielles pour la déficience intellectuelleRamos, Mariana 09 October 2015 (has links)
L’intégrité des synapses neuronales est primordiale pour le développement et le maintien des capacités cognitives. Des mutations dans des gènes codant pour des protéines synaptiques ont été trouvées chez des patients atteints de déficience intellectuelle (DI), qui est une maladie neurodéveloppementale ayant des conséquences sur les fonctions intellectuelles et adaptatives. Ce travail de thèse porte sur l’étude de l’un de ces gènes, IL1RAPL1, dont les mutations sont responsables d’une forme non-syndromique de DI liée au chromosome X, et sur le rôle de la protéine IL1RAPL1 dans la formation et le fonctionnement des synapses. IL1RAPL1 est une protéine trans-membranaire qui est localisée dans les synapses excitatrices où elle interagit avec les protéines post-synaptiques PSD-95, RhoGAP2 et Mcf2l. De plus, IL1RAPL1 interagit en trans- avec une protéine phosphatase présynaptique, PTPd, via son domaine extracellulaire. Nous avons étudié les conséquences fonctionnelles de deux nouvelles mutations qui affectent le domaine extracellulaire d’IL1RAPL1 chez des patients présentant une DI. Ces mutations conduisent soit à une diminution de l’expression de la protéine, soit à une réduction de l’interaction avec PTPd affectant ainsi la capacité d’IL1RAPL1 à induire la formation de synapses excitatrices. En absence d’IL1RAPL1, le nombre ou la fonction des synapses excitatrices est diminué, ce qui mène à un déséquilibre entre les transmissions synaptiques excitatrice et inhibitrice dans des régions spécifiques du cerveau. Dans le cas particulier de l’amygdale latérale, nous avons montré que ce déséquilibre conduit à des défauts de mémoire associative chez la souris déficiente en Il1rapl1. L’ensemble des résultats qui font partie de ce travail montre que l’interaction IL1RAPL1/PTPd est essentielle pour la formation des synapses et suggère que les déficits cognitifs des patients avec une mutation dans il1rapl1 proviennent du déséquilibre de la balance excitation/ inhibition. Ces observations ouvrent des perspectives thérapeutiques visant à rétablir cette balance dans les réseaux neuronaux affectés. / Preserving the integrity of neuronal synapses is important for the development and maintenance of cognitive capacities. Mutations on a growing number of genes coding for synaptic proteins are associated with intellectual disability (ID), a neurodevelopmental disease characterized by deficits in adaptive and intellectual functions. The present work is dedicated to the study of one of those genes, IL1RAPL1, and the role of its encoding protein in synapse formation and function. IL1RAPL1 is a trans-membrane protein that is localized at excitatory synapses, where it interacts with the postsynaptic proteins PSD-95, RhoGAP2 and Mcf2l. Moreover, the extracellular domain of IL1RAPL1 interacts trans-synaptically with the presynaptic phosphatase PTPd. We studied the functional consequences of two novel mutations identified in ID patients affecting this IL1RAPL1 domain. Those mutations lead either to a decrease of the protein expression or of its interaction with PTPd, affecting in both cases the IL1RAPL1-mediated excitatory synapse formation. In the absence of IL1RAPL1, the number or function of excitatory synapses is perturbed, leading to an imbalance of excitatory and inhibitory synaptic transmissions in specific brain circuits. In particular, we showed that this imbalance in the lateral amygdala results in associative memory deficits in mice lacking Il1rapl1. Altogether, the results included in this work show that IL1RAPL1/PTPd interaction is essential for synapse formation and suggest that the cognitive deficits in ID patients with mutations on IL1RAPL1 result from the imbalance of the excitatory and inhibitory transmission. These observations open therapeutic perspectives aiming to reestablish this balance in the affected neuronal circuits.
|
24 |
Putative Role of Connectivity in the Generation of Spontaneous Bursting Activity in an Excitatory Neuron PopulationShao, Jie 12 July 2004 (has links)
Population-wide synchronized rhythmic bursts of electrical activity are present in a
variety of neural circuits. The proposed general mechanisms for
rhythmogenesis are often attributed to intrinsic and synaptic properties. For example,
the recurrent excitation through excitatory synaptic connections determines
burst initiation, and the slower kinetics of ionic currents or synaptic depression
results in burst termination. In such theories, a slow recovery process is essential
for the slow dynamics associated with bursting.
This thesis presents a new hypothesis that depends on
the connectivity pattern among neurons rather than a slow kinetic process to achieve
the network-wide bursting. The thesis
begins with an introduction of bursts of electrical activity in a purely excitatory
neural network and existing theories explaining this phenomenon. It then covers
the small-world approach, which is applied to modify the network structure in the simulation,
and the Morris-Lecar (ML) neuron model, which is used as the component cells in the network.
Simulation results of the dependence of bursting activity on network connectivity,
as well as the inherent network properties explaining this dependence are described.
This work shows that the network-wide bursting activity emerges in the small-world network
regime but not in the regular or random networks, and this small-world bursting primarily results
from the uniform random distribution of long-range connections in the network, as well as
the unique dynamics in the ML model. Both attributes foster progressive synchronization in
firing activity throughout the network during a burst, and this synchronization may terminate a burst in the absence of an obvious slow recovery process. The thesis concludes with possible future work.
|
25 |
Neural Mechanisms of Temporomandibular Joint and Masticatory Muscle PainLam, David King 19 January 2009 (has links)
The underlying nociceptive mechanisms in temporomandibular joint (TMJ) and masticatory muscles in many pain conditions are still unclear, largely due to the limited study of peripheral and central neural mechanisms affecting craniofacial musculoskeletal tissues. This study provided evidence in support of Hypothesis 1: Peripheral glutamatergic and capsaicin-sensitive mechanisms modulate the properties of primary afferents and brainstem neurons processing deep craniofacial nociceptive information. Effects of glutamate and capsaicin injected into the receptive field of deep craniofacial nociceptive afferents or TMJ of TMJ-responsive nociceptive neurons in trigeminal subnucleus caudalis/upper cervical cord (Vc/UCC) were studied in halothane-anesthetized rats. When injected alone, glutamate and capsaicin activated and induced peripheral sensitization in many afferents. Following glutamate injection, capsaicin-evoked activity was greater than that evoked by capsaicin alone, whereas following capsaicin injection, glutamate-evoked responses were similar to those of glutamate alone. When injected alone, glutamate and capsaicin also activated and induced central sensitization in most Vc/UCC neurons. Following glutamate injection, capsaicin evoked greater activity and less sensitization compared with capsaicin alone, whereas following capsaicin, glutamate was less effective in activating and sensitizing most Vc/UCC neurons. This apparent desensitizing effect of capsaicin on glutamate-evoked excitability of Vc/UCC neurons contrasts with the lack of capsaicin-induced modulation of glutamate-evoked afferent excitability, suggesting that peripheral and central sensitization may be differentially involved in the nociceptive effects of glutamate and capsaicin applied to deep craniofacial tissues. Further evidence of glutamate-capsaicin interactions was documented in the attenuation by TMJ pre-injection of glutamate receptor antagonists of jaw muscle activity reflexly evoked by TMJ injection of capsaicin. Moreover, additional findings support Hypothesis 2: Surgical cutaneous incision modulates the properties of brainstem neurons processing deep craniofacial nociceptive information. TMJ-responsive nociceptive Vc/UCC neurons could be activated by surgical incision of the skin overlying the TMJ and this incision-induced afferent barrage caused nociceptive neurons to be temporarily refractory to further capsaicin-induced central sensitization.
These novel findings suggest that peripheral glutamate and capsaicin receptor mechanisms as well as surgical cutaneous incision may be involved in the nociceptive processing of deep craniofacial afferent inputs and may interact to modulate both activation as well as sensitization evoked from these tissues.
|
26 |
Neural Mechanisms of Temporomandibular Joint and Masticatory Muscle PainLam, David King 19 January 2009 (has links)
The underlying nociceptive mechanisms in temporomandibular joint (TMJ) and masticatory muscles in many pain conditions are still unclear, largely due to the limited study of peripheral and central neural mechanisms affecting craniofacial musculoskeletal tissues. This study provided evidence in support of Hypothesis 1: Peripheral glutamatergic and capsaicin-sensitive mechanisms modulate the properties of primary afferents and brainstem neurons processing deep craniofacial nociceptive information. Effects of glutamate and capsaicin injected into the receptive field of deep craniofacial nociceptive afferents or TMJ of TMJ-responsive nociceptive neurons in trigeminal subnucleus caudalis/upper cervical cord (Vc/UCC) were studied in halothane-anesthetized rats. When injected alone, glutamate and capsaicin activated and induced peripheral sensitization in many afferents. Following glutamate injection, capsaicin-evoked activity was greater than that evoked by capsaicin alone, whereas following capsaicin injection, glutamate-evoked responses were similar to those of glutamate alone. When injected alone, glutamate and capsaicin also activated and induced central sensitization in most Vc/UCC neurons. Following glutamate injection, capsaicin evoked greater activity and less sensitization compared with capsaicin alone, whereas following capsaicin, glutamate was less effective in activating and sensitizing most Vc/UCC neurons. This apparent desensitizing effect of capsaicin on glutamate-evoked excitability of Vc/UCC neurons contrasts with the lack of capsaicin-induced modulation of glutamate-evoked afferent excitability, suggesting that peripheral and central sensitization may be differentially involved in the nociceptive effects of glutamate and capsaicin applied to deep craniofacial tissues. Further evidence of glutamate-capsaicin interactions was documented in the attenuation by TMJ pre-injection of glutamate receptor antagonists of jaw muscle activity reflexly evoked by TMJ injection of capsaicin. Moreover, additional findings support Hypothesis 2: Surgical cutaneous incision modulates the properties of brainstem neurons processing deep craniofacial nociceptive information. TMJ-responsive nociceptive Vc/UCC neurons could be activated by surgical incision of the skin overlying the TMJ and this incision-induced afferent barrage caused nociceptive neurons to be temporarily refractory to further capsaicin-induced central sensitization.
These novel findings suggest that peripheral glutamate and capsaicin receptor mechanisms as well as surgical cutaneous incision may be involved in the nociceptive processing of deep craniofacial afferent inputs and may interact to modulate both activation as well as sensitization evoked from these tissues.
|
27 |
Kainate receptor modulation of synaptic transmission in neocortexMathew. Seena S. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from first page of PDF file (viewed Feb. 7, 2008). Includes bibliographical references.
|
28 |
Excitotoxic neurodegeneration in mouse brain : roles of immune cells and cytokines /Chen, Zhiguo, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 5 uppsatser.
|
29 |
Mechanisms of rhythm generation in the lamprey locomotor network /Cangiano, Lorenzo, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
|
30 |
Modulatory effects and interactions of substance P, dopamine, and 5-HT in a neuronal network /Svensson, Erik, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 7 uppsatser.
|
Page generated in 0.0471 seconds