• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 49
  • 12
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 184
  • 46
  • 40
  • 18
  • 15
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

THE IMPACT OF BIOACTIVE PHYTOSTEROL, STIGMASTEROL, ON CHOLESTEROL ELIMINATION PATHWAYS IN MICE

Lifsey, Hannah C. 01 January 2018 (has links)
Despite advances in healthcare, cardiovascular disease (CVD) remains the leading cause of death in the United States. Elevated levels of plasma cholesterol are highly predictive of CVD and stroke and are the principal driver of atherosclerosis. Unfortunately, current cholesterol lowering agents, such as statins, are not known to reverse atherosclerotic disease once it has been established. In preclinical models, agonists of nuclear receptor, LXR, have been shown to reduce and reverse atherosclerosis. Phytosterols are bioactive non-cholesterol sterols that act as LXR agonists and regulate cholesterol metabolism and transport. We hypothesize that stigmasterol would act as an LXR agonist and alter intestinal cholesterol secretion to promote cholesterol elimination. Mice were fed a control diet, or a diet supplemented with stigmasterol (0.3% w/w) or T0901317 (0.015% w/w), a known LXR agonist. In this experiment we analyzed the sterol content of bile, intestinal perfusate, plasma, and feces. Additionally, the liver and small intestine were analyzed for relative levels of transcripts known to be regulated by LXR. We observed that T0901317 robustly promoted cholesterol elimination and acted as a strong LXR agonist. Stigmasterol also promoted cholesterol elimination but did not alter LXR-dependent gene expression. Stigmasterol promoted transintestinal cholesterol secretion through an LXR-independent pathway.
72

Predicting episodic ammonium excretion by freshwater mussels via gape response and heart rate

Hauser, Lee W 01 May 2015 (has links)
Freshwater mussels are a viable option to detect real-time changes in water quality within aquatic ecosystems. Known as ecosystem engineers, freshwater mussels are constantly filtering particles and recycling nutrients in the benthic community. Therefore, identifying their physiological responses to alterations in water quality will enable mussels to not only serve as biomonitors but help model their impact on nitrogen cycle. This research focuses on identifying how mussel gape and heart rate respond to the addition of phytoplankton following a period of limited food availability. Immediately following phytoplankton addition, mussels show a decreased gape position linked with changes heart rate. As the gape returns to an open position, overlying ammonia concentrations increase showing an end of the metabolism process. As a result, pairing physiological changes with increased concentrations of phytoplankton, freshwater mussels' impact on ammonium concentrations can be accurately predicted. By inputting experimental excretion rates combined with variations in gape position, dynamic models will be simulate ammonium concentrations in the overlying water.
73

The Role of Corticosteroids in Nitrogen Excretion of the Gulf Toadfish (Opsanus beta)

Rodela, Tamara 03 May 2011 (has links)
In contrast to most teleost fish that are ammoniotelic, the gulf toadfish (Opsanus beta) is both facultatively ureogenic and ureotelic. In vivo pharmacological manipulations were used to show that lowering circulating cortisol levels or blocking glucocorticoid receptors (GR) enhanced both urea excretion and urea pulse size. These findings demonstrated that changes in pulsatile urea excretion in the toadfish are mediated by the permissive action of cortisol through GRs. Measurement of urea transport across isolated basolateral gill membranes revealed a cortisol-sensitive carrier mechanism. Cortisol infusion in vivo significantly reduced urea transport capacity, suggesting that cortisol inhibits the recruitment of urea transport proteins (UT) to the basolateral membrane to ultimately decrease the size of the urea pulse in toadfish. A 1.2 kb fragment of the upstream transcription start site for the toadfish urea transporter (tUT) gene was isolated and in silico analysis revealed the presence of several putative glucocorticoid response element (GRE) half sites. Toadfish provided with this regulatory sequence in a reporter gene construct showed increased reporter gene transcription driven by cortisol. The data indicated that cortisol-mediated upregulation of tUT mRNA by GREs may be necessary to maintain tUT activity. Four Rhesus (Rh) glycoproteins (Rhag, Rhbg, Rhcg1, Rhcg2) were isolated from toadfish; these sequences grouped with those of other vertebrates coding for membrane channels that transport ammonia. In vivo increases in circulating cortisol reduced branchial Rh glycoprotein expression and decreased ammonia excretion. These changes were accompanied by cortisol-induced increases in glutamine synthetase activity, an enzyme that captures ammonia for urea synthesis. Taken together, the data indicated that cortisol reduces the loss by branchial excretion of ammonia, instead favouring biochemical pathways that convert ammonia to urea. This thesis confirms that nitrogen excretion in toadfish is controlled and regulated in fashions unlike those in other teleosts. The results demonstrate the importance of the GR signaling pathway in mediating changes in both urea and ammonia transport through molecular mechanisms. As a whole, the data provide a new understanding of branchial nitrogen excretion in the gulf toadfish and enhance our evolutionary perspective of the integrated biological systems involved in nitrogen excretion in fish.
74

Fibre fermentation in the pig intestine : effect on metabolite production and nitrogen excretion

Jha, Rajesh 10 May 2010
Fine tuning a nutritional strategy by incorporating dietary fibre (DF) in pig diets can help to improve gut health. Fermentation of DF, especially the soluble fraction, in pig intestines yields short-chain fatty acids (SCFA) and lactic acid, which have been found to improve gut health by favouring the growth of health-promoting bacteria such as <i>Lactobacilli</i> and <i>Bifidobacteria</i>, at the expense of pathogenic ones like <i>Clostridium</i> or <i>Salmonella</i>, which may enhance the health of host species. The presence of fermentable fibre in the pig diet can also contribute to reducing nitrogen (N) excretion, which can have a positive impact on the environmental footprint, one of the main concerns of a modern commercial pork production.<p> The overall objective of this thesis project was to evaluate the fermentation characteristics of a selection of feedstuffs in the pig intestines and their potential impact on the gut environment and nitrogen excretion. The evaluation was performed by executing two projects using both <i>in vitro</i> and in <i>vivo studies</i>.<p> The first project focused on the fermentation characteristics of hulless barley in comparison to hulled barley and oats and their effects on the gut environment, especially the production of fermentation metabolites. The rate of fibre fermentation in the intestines was first studied by means of an in vitro gas production technique. The results demonstrated that hulless barleys have higher fermentability and produce higher amounts of SCFA than hulled barley and oats. An experiment carried out on pigs confirmed that the fermentation of the soluble fibre fraction of hulless barley in the gut leads to increased production of SCFA and lactic acid, which in turn contribute to the growth of potentially beneficial microbiota and decrease potentially harmful bacteria, an indicator of improved gut health. This finding shows that gut health parameters may be modulated. Thus gut health could potentially be improved through feed formulation by a judicious selection of feed ingredients with specific fibre fractions, not only by the addition of isolated fibres, which is commonly recommended at present.<p> The second project was executed to study the effect of some feedstuffs differing in their DF and protein content on fermentation characteristics and N excretion in pigs. The feedstuffs included wheat bran, wood cellulose, peas, pea hulls, pea inner fibre, sugar beet pulp, flax seed meal and corn distiller's dried grains with solubles. The results showed that peas and pea fibre-based diets produced higher amounts of SCFA and reduced N excreted, compared to others. In a parallel <i>in vitro</i> study, fermentation characteristics and bacterial protein synthesis was also studied using the same feed ingredients. The findings of the <i>in vitro</i> study corraborated the results of the <i>in vivo</i> experiment. These studies showed that peas and pea fibres have the potential to be used in pig diets in order to gain gut health-benefits and reduce N excretion.<p> From this thesis, it can be concluded that sources and type of dietary fibre have a significant effect on the production of fermentation metabolites in the pig intestine and on N excretion. Among the feed ingredients studied, hulless barley and pea fibres seem to have the greatest potential to be included in pig diets as a source of fermentable fibre to modulate the gut environment, which in turn, extend possibly health-promoting properties and reduce N excretion from pigs. However, further research is needed to understand the specific health benefits of these fibre sources and to quantify the specific fibre components required to achieve these benefits.
75

The Role of Corticosteroids in Nitrogen Excretion of the Gulf Toadfish (Opsanus beta)

Rodela, Tamara 03 May 2011 (has links)
In contrast to most teleost fish that are ammoniotelic, the gulf toadfish (Opsanus beta) is both facultatively ureogenic and ureotelic. In vivo pharmacological manipulations were used to show that lowering circulating cortisol levels or blocking glucocorticoid receptors (GR) enhanced both urea excretion and urea pulse size. These findings demonstrated that changes in pulsatile urea excretion in the toadfish are mediated by the permissive action of cortisol through GRs. Measurement of urea transport across isolated basolateral gill membranes revealed a cortisol-sensitive carrier mechanism. Cortisol infusion in vivo significantly reduced urea transport capacity, suggesting that cortisol inhibits the recruitment of urea transport proteins (UT) to the basolateral membrane to ultimately decrease the size of the urea pulse in toadfish. A 1.2 kb fragment of the upstream transcription start site for the toadfish urea transporter (tUT) gene was isolated and in silico analysis revealed the presence of several putative glucocorticoid response element (GRE) half sites. Toadfish provided with this regulatory sequence in a reporter gene construct showed increased reporter gene transcription driven by cortisol. The data indicated that cortisol-mediated upregulation of tUT mRNA by GREs may be necessary to maintain tUT activity. Four Rhesus (Rh) glycoproteins (Rhag, Rhbg, Rhcg1, Rhcg2) were isolated from toadfish; these sequences grouped with those of other vertebrates coding for membrane channels that transport ammonia. In vivo increases in circulating cortisol reduced branchial Rh glycoprotein expression and decreased ammonia excretion. These changes were accompanied by cortisol-induced increases in glutamine synthetase activity, an enzyme that captures ammonia for urea synthesis. Taken together, the data indicated that cortisol reduces the loss by branchial excretion of ammonia, instead favouring biochemical pathways that convert ammonia to urea. This thesis confirms that nitrogen excretion in toadfish is controlled and regulated in fashions unlike those in other teleosts. The results demonstrate the importance of the GR signaling pathway in mediating changes in both urea and ammonia transport through molecular mechanisms. As a whole, the data provide a new understanding of branchial nitrogen excretion in the gulf toadfish and enhance our evolutionary perspective of the integrated biological systems involved in nitrogen excretion in fish.
76

Fibre fermentation in the pig intestine : effect on metabolite production and nitrogen excretion

Jha, Rajesh 10 May 2010 (has links)
Fine tuning a nutritional strategy by incorporating dietary fibre (DF) in pig diets can help to improve gut health. Fermentation of DF, especially the soluble fraction, in pig intestines yields short-chain fatty acids (SCFA) and lactic acid, which have been found to improve gut health by favouring the growth of health-promoting bacteria such as <i>Lactobacilli</i> and <i>Bifidobacteria</i>, at the expense of pathogenic ones like <i>Clostridium</i> or <i>Salmonella</i>, which may enhance the health of host species. The presence of fermentable fibre in the pig diet can also contribute to reducing nitrogen (N) excretion, which can have a positive impact on the environmental footprint, one of the main concerns of a modern commercial pork production.<p> The overall objective of this thesis project was to evaluate the fermentation characteristics of a selection of feedstuffs in the pig intestines and their potential impact on the gut environment and nitrogen excretion. The evaluation was performed by executing two projects using both <i>in vitro</i> and in <i>vivo studies</i>.<p> The first project focused on the fermentation characteristics of hulless barley in comparison to hulled barley and oats and their effects on the gut environment, especially the production of fermentation metabolites. The rate of fibre fermentation in the intestines was first studied by means of an in vitro gas production technique. The results demonstrated that hulless barleys have higher fermentability and produce higher amounts of SCFA than hulled barley and oats. An experiment carried out on pigs confirmed that the fermentation of the soluble fibre fraction of hulless barley in the gut leads to increased production of SCFA and lactic acid, which in turn contribute to the growth of potentially beneficial microbiota and decrease potentially harmful bacteria, an indicator of improved gut health. This finding shows that gut health parameters may be modulated. Thus gut health could potentially be improved through feed formulation by a judicious selection of feed ingredients with specific fibre fractions, not only by the addition of isolated fibres, which is commonly recommended at present.<p> The second project was executed to study the effect of some feedstuffs differing in their DF and protein content on fermentation characteristics and N excretion in pigs. The feedstuffs included wheat bran, wood cellulose, peas, pea hulls, pea inner fibre, sugar beet pulp, flax seed meal and corn distiller's dried grains with solubles. The results showed that peas and pea fibre-based diets produced higher amounts of SCFA and reduced N excreted, compared to others. In a parallel <i>in vitro</i> study, fermentation characteristics and bacterial protein synthesis was also studied using the same feed ingredients. The findings of the <i>in vitro</i> study corraborated the results of the <i>in vivo</i> experiment. These studies showed that peas and pea fibres have the potential to be used in pig diets in order to gain gut health-benefits and reduce N excretion.<p> From this thesis, it can be concluded that sources and type of dietary fibre have a significant effect on the production of fermentation metabolites in the pig intestine and on N excretion. Among the feed ingredients studied, hulless barley and pea fibres seem to have the greatest potential to be included in pig diets as a source of fermentable fibre to modulate the gut environment, which in turn, extend possibly health-promoting properties and reduce N excretion from pigs. However, further research is needed to understand the specific health benefits of these fibre sources and to quantify the specific fibre components required to achieve these benefits.
77

Nitrogen accretion and excretion in broilers fed diets low in protein during the starter period /

Allen, Heather Michelle. January 2003 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2003. / Typescript. Includes bibliographical references (leaves 80-89). Also available on the Internet.
78

Nitrogen accretion and excretion in broilers fed diets low in protein during the starter period

Allen, Heather Michelle. January 2003 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2003. / Typescript. Includes bibliographical references (leaves 80-89). Also available on the Internet.
79

Effect of reducing dietary protein level and adding amino acids on performance, carcass characteristics, and nitrogen excretion of finishing pigs /

Liu, Haijun, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 112-120). Also available on the Internet.
80

Effect of reducing dietary protein level and adding amino acids on performance, carcass characteristics, and nitrogen excretion of finishing pigs

Liu, Haijun, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 112-120). Also available on the Internet.

Page generated in 0.1127 seconds