• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 14
  • 14
  • 11
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The effect of breast support on running biomechanics

Milligan, Alexandra January 2013 (has links)
Whilst sports bras have been reported to significantly reduce breast kinematics and exercise-related breast pain, little is known about the effect of breast support on running biomechanics. This research area has novel applications and many potential benefits to female athletes. Papers available within this area hypothesise that the reduction of breast kinematics and exercise-related breast pain, provided by a high breast support, ensures running biomechanics are maintained and potentially enhanced, however, few have provided evidence of this. To investigate this area this thesis explored biomechanical measures during running including; breast biomechanics, full body running kinematics, and an examination of upper body muscle activity during a five kilometre treadmill run, in low and high breast support conditions. An integrated programme of work was conducted with multiple variables collected and presented in chapter four to seven. Chapter three identified significant changes in breast kinematics during a prolonged treadmill run, and defined the run duration for this programme of work. Chapter four examined breast biomechanics during a five kilometre treadmill run, in different breast support conditions. In line with previous publications, the high breast support provided superior magnitudes of support to the breasts (up to 75% reduction) compared to the lower breast support conditions, and significant reductions in exercise-related breast pain throughout treadmill running. Increases in multiplanar breast displacement, velocity, acceleration, and approximated force were reported from the start to the end of the five kilometre run in both low (increases of 7 mm, 0.10 m.s-1, 5.6 m.s-2, 3 N) and high (5 mm, 0.07 m.s-1, 2.7 m.s-2, 1 N) breast supports. These novel findings demonstrate that breast kinematics increase during a five kilometre treadmill run, which may directly affect an individual’s running biomechanics. Assessing the magnitude of variance associated with breast biomechanics data ensures accurate interpretation of the reported findings. To achieve this, within- and between participant variance in multiplanar breast kinematics were quantified utilising the coefficient of variance (Cv%). The smallest differences in breast kinematics reported in the third chapter exceeded the reported within-participant variance in both low (12 Cv%) and high (15 Cv%) breast supports, and were therefore defined as meaningful differences. Between-participant variance in multiplanar breast kinematics in low (23 Cv%) and high (29 Cv%) breast supports was greater than the within-participant variance, and should be considered in future for research designs and sample sizes. To assess running kinematics between breast supports, a full body kinematic analysis was conducted including the quantification of step length and full body Cardan joint angles. When running in the lower breast support conditions, costly running mechanics such as greater thorax flexion, shorter step length, less acute knee angle, greater arm swing mechanics, and greater axial rotation of the thorax and pelvis were reported. However, the high breast support exhibited a kinematic profile more closely aligned with a desirable, economic running style previously defined within the literature. These findings support claims that the breast support worn may impact upon biomechanical parameters, with high breast support eliciting advantageous running kinematics. This unique work found female runners will alter their running kinematics depending upon the breast support worn. Changes in running kinematics away from an individual’s natural kinematics have been linked to changes in the activation of muscles driving these movements. Therefore, given the reported differences in upper body running kinematics, the effect of breast support on the activity of six upper body muscles central to running was examined and reported. Reductions in normalised peak activity of the pectoralis major (37% reduction), anterior deltoid (26 reduction) and medial deltoid (30% reduction) were reported in the high breast support; suggesting that a high breast support significantly reduces the peak activation of these three muscles compared to lower breast support conditions during running. Furthermore, the differences in activity of these muscles are thought to be associated with the changes in upper body kinematics, specifically arm swing mechanics. The research design of this programme of work enabled relationships between the key biomechanical measures to be explored, providing a holistic view of the effect of breast support on the biomechanics of the female runner. Relationships were identified between the magnitude of breast kinematics, which is governed by the breast support worn, and the following biomechanical measures investigated; exercise-related breast pain, upper and lower body running kinematics and upper body muscle activity. Furthermore, certain running kinematics demonstrated significant relationships to muscle activity. This research has shown that breast biomechanics, running kinematics and upper body activity are affected by the breast support worn during treadmill running. The use of high breast support has demonstrated the potential of this breast support to benefit running biomechanics. This novel programme of work has progressed the knowledge of the effect of breast support on both breast and body biomechanics during treadmill running.
12

The effect of ethnicity on the vascular responses to cooling in men

Maley, Matthew January 2015 (has links)
Non-freezing cold injury (NFCI) is caused by protracted skin cooling above the freezing point of tissue and up to ~15 °C which predominantly afflicts the extremity skin sites owing to their enhanced vasoconstrictor response to cooling. This cold injury may cause long term symptoms, possibly debilitating an individual for their lifetime. Whilst pain and excessive sweating of the injured skin site are common features, some individuals may appear asymptomatic until they are exposed to cold where they may experience an augmented vasoconstrictor response and rewarm slower than those without NFCI, thereby exposing those individuals to further cold injuries. Compared with Caucasians (CAU), individuals of African descent (AFD) are more susceptible to NFCI. The reason for the increased susceptibility in AFD is not known but may be due to a lower skin blood flow (SkBF) and therefore skin temperature (Tsk) during cooling and subsequent rewarming. There are no data investigating extremity (i.e. hand and foot) cooling and subsequent rewarming responses between ethnic groups. Additionally, it is not known how individuals of Asian descent (ASN) compare with these two ethnicities. Therefore, a series of studies are reported in this thesis that studied the ethnic difference in the response to cold and provided data on the mechanisms responsible for the differences observed between ethnic groups. The approach of the experiments described in this thesis followed in vivo testing of young healthy male participants from different ethnic groups. Study One demonstrated that local hand cooling (30 minutes at 8 °C) caused more intense and protracted finger vasoconstriction in AFD than CAU. Additionally, AFD experienced an onset of finger vasoconstriction sooner than CAU during progressive cooling. ASN responses were between that of AFD and CAU. The Tsk responses to local foot cooling (two minutes at 15 °C) were not different between ethnic groups. As ASN did not demonstrate measureable differences compared with the other ethnic groups they were not examined in the subsequent studies. In Study Two the responses to transdermally delivered vasoactive agents were studied in the extremities. The vasodilator response to the endothelium-dependent vasodilator, acetylcholine (ACh), was smaller in AFD than CAU in the non-glabrous finger and toe skin sites. These skin sites did not demonstrate any differences between ethnicities in response to an endothelium-independent vasodilator, sodium nitroprusside, or the vasoconstrictor noradrenaline. These studies provided evidence in support of an altered endothelium function in AFD which may contribute to the exaggerated vasoconstrictor response and slower rewarming in this group. In Study Three the responses to ACh were studied in the presence of cyclooxygenase (COX) inhibition, as this enzyme may be stimulating reactive oxygen species (as well as prostanoids) causing endothelium-dependent contracting factors. The results indicate that the vasodilator responses to local application of ACh in the non-glabrous foot and finger skin sites were lower in AFD than CAU irrespective of whether COX was inhibited or not. This study suggests that the COX pathway is not the primary source of dysfunction causing the lower vasodilator responses in AFD compared with CAU. However, the contribution of the COX pathway during local foot and hand cooling and rewarming in CAU and AFD is not known, therefore, Study Four investigated the vascular responses with and without COX inhibition. Following placebo, SkBF and Tsk did not differ between ethnic groups at the toe pad skin site during foot cooling (30 minutes at 8 °C). Following aspirin consumption the toe pad skin site was cooler in CAU than AFD but SkBF did not differ between groups. During hand cooling (30 minutes at 8 °C) AFD experienced significantly lower finger SkBF and Tsk compared with CAU irrespective of whether COX was inhibited or not. The studies in this thesis collectively demonstrate: 1) AFD respond to local hand cooling with an earlier onset of vasoconstriction, greater skin cooling and slower rewarming, and 2) the microcirculation of the non-glabrous skin sites of the foot and finger in AFD appears to exhibit a reduced response to ACh. The increased prevalence of NFCI in AFD may be attributable to the greater and sustained vasoconstrictor response to local cooling in the hands. The mechanisms controlling this response in AFD are not clear, but do not appear to be directly attributable to the COX pathway. The local foot cooling responses, which were largely comparable between AFD and CAU, highlights that there are other differences between ethnic groups which lead to the increased prevalence of NFCI in AFD.
13

On the edge of thermoregulation : a matter of physiology and physics

Walker, Ella Frances January 2015 (has links)
This thesis describes experiments designed to investigate the point of uncompensable heat stress in healthy exercising males by manipulating variables in the heat balance equation. The addition of minimal clothing did not have a clear influence on the mean skin temperature (T̅sk) and thermoeffector responses (local sweat rate and skin blood flow) during incremental exercise at 40 °C (it did at 30 °C). A comparison between the two different ambient temperatures however, showed a significant effect on T̅sk, which was on average 1.55 (0.29) °C higher in 40 °C compared to 30 °C. Subsequently, a protocol was developed where ambient temperature was incrementally increased. This was shown to be a reliable and valid method to evoke uncompensable heat stress, and allowed the comparison of variables (humidity, work rate) and groups (fitness). Further experiments in the thesis show that uncompensable heat stress occurs at a similar deep body temperature (Tc) for males with a range of aerobic fitness in high and low humidity environments. It was also shown that high aerobic fitness (compared to low aerobic fitness): 1) does not offer any benefit in terms of delaying the transition to uncompensable heat stress when exercising at a matched absolute work rate (60 Watts) in a low and high humidity environment, or at a matched relative work (40 % of VO2max) in a low humidity environment, 2) may cause uncompensable heat stress to occur at a lower ambient temperature when working at matched relative work rate in a humid environment. Importantly, in these experiments, local sweat rate continued to rise beyond the point of uncompensable heat stress – or upper limit of the “thermoregulatory zone”, regardless of the work rate, humidity or aerobic fitness status of the individual, indicating a thermoeffector reserve remained. It is therefore concluded, that the transition into uncompensable heat stress is not synonymous with maximal thermoeffector output and the sweating and skin blood flow responses of an individual are determined by the thermal profile. An elevated and increasing Tc may be necessary to facilitate increased levels of thermoeffector output. This is an important and novel contribution to the understanding of the thermoregulatory response to heat stress.
14

Evaluating Effectiveness of an Undergraduate Dietetics Curriculum

Middaugh, Amanda Lyn January 2011 (has links)
Assessment is necessary in many programs to be certain that expected outcomes are being met. Without curriculum evaluation, higher education faculty would be unaware if students are competent in the skills and knowledge that the faculty thought they were teaching. New curriculum competencies related to dietetics are introduced every five to seven years from the Commission on Accreditation for Dietetics Education (CADE). CADE establishes the minimum requirements of foundation knowledge, skills, and competencies for institutions to train entry level dietitians. Even though a variety of criteria have been proposed to evaluate curricula, no common model or format is used because of the differences in each program, college, or university. The purpose of this study is to evaluate North Dakota State University's (NDSU) dietetics program through students' understanding and knowledge as demonstrated by the change in pretest and post-test scores to ensure they are meeting competencies. The Dietetics Program Assessment Test is made up of questions contributed by each instructor in the dietetics program at NDSU regarding their particular area of expertise. The effectiveness was assessed by comparing students' Dietetics Program Assessment pretest scores, taken during sophomore year, with their post-test scores, taken during senior year. This evaluation was used to determine if pretest scores predict program course grades or if high pretest results indicate a more successful student. Therefore, the scores could be used as a selection criterion for acceptance into the dietetics program if there is a strong correlation. Results from students in the Coordinated Program in Dietetics (CPD) were compared to those in the Didactic Program in Dietetics (DPD) and those not accepted into either program to see if there is a difference between the groups. The test was also divided into dietetics core content areas (community nutrition, medical nutrition therapy/clinical, food service, basic nutrition/lifespan, and management) to see if there was an area in which students were scoring poorly. Pretests were taken by 122 pre-dietetics students; of these, 46 were admitted into the CPD, 29 were admitted into the DPD, and 47 were not admitted into either program. A paired t-test found there to be a significant difference (p<0.0001) between individual mean pretest scores and post-test scores, which means students' knowledge about the area of dietetics had greatly improved through courses throughout each program. A t-test found there was not a significant difference between either the pretest scores (p=0.9847) or the post-test scores (p=0.4263) of those in the CPD and DPD programs. In all of the core dietetics content areas the average percentage of correct questions improved from the pretest to the post-test, and each content area had a similar improvement, roughly a 25 percentage point increase. Using an exact Kendall's Tau Test to examine the association between pretest score and final course grades, no significant difference was found in all of the core dietetics courses expect for Food Selection and Preparation Principles (HNES 261) (p=0.0324). In conclusion, since no one content area on the post-test appears to be lacking more than any other, it would appear that the students are learning from all courses. Due to the lack of association between all core dietetics course grades and pretest scores along with the small sample size, pretest scores should not currently be used alone or as one of the selection criterion for admittance into either dietetics programs.

Page generated in 0.0374 seconds