• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse asymptotique de systèmes hyperboliques quasi-linéaires du premier ordre / Asymptotic analysis of first-order quasilinear hyperbolic systems

Wasiolek, Victor 29 May 2015 (has links)
Les systèmes hyperboliques interviennent dans de nombreuses branches des sciences : théorie cinétique, mécanique des fluides non visqueux, magnéto hydrodynamique, dynamique des gaz non visqueux, trafic routier, flux d’une rivière ou d’un glacier, processus de sédimentation, processus d’échanges chimiques, etc. Et souvent, les systèmes qui régissent ces évènements font intervenir des petits paramètres, dont l’étude asymptotique permet d’envisager des simplifications mathématiques et/ou informatiques notoires. L’existence locale et l’existence globale de solutions, uniformément par rapport à ces paramètres, sont des questions fondamentales. Cette thèse regroupe à la fois des résultats généraux sur l’existence locale uniforme de solutions pour des systèmes hyperboliques quasi-linéaires du premier ordre ; et sur l’existence globale uniforme de solutions autour d’un équilibre constant pour ces mêmes systèmes. Le cas du système d’Euler-Maxwell ne satisfaisant pas les conditions requises pour l’existence uniforme globale, nous le traitons à part. / Hyperbolic systems arise in a large field of sciences : kinetic theory, inviscid reactive flow, magnetohydrodynamics, inviscid gas dynamics, traffic flow, river or glacier flow, sedimentation processes, chemical exchange processes, etc. In these kind of systems, small paramaters often appear, and an asymptotic study may lead to mathematical or computational simplifications. One fundamental problem that we may work on is local and global existence of solutions for these systems, uniformly with respect to these parameters. This Ph.D. thesis includes, on one hand, general results on uniform local existence of solutions for first order quasi-linear hyperbolic systems ; and on the other hand, results on uniform global existence of solutions near constant equilibriums for these same systems. In the case of Euler-Maxwell systems, required conditions are not fulfilled for uniform global existence, then we treat it separately.

Page generated in 0.1007 seconds