• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 2
  • 1
  • Tagged with
  • 21
  • 9
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing the preservation potential of biogenic features in pre-Neogene tufas and travertines applications to exobiology /

Richardson, Justin. January 2005 (has links)
Thesis (M.S.)--Bowling Green State University, 2005. / Document formatted into pages; contains xiv, 110 p. : ill., maps. Includes bibliographical references.
2

Development of methodology for astrobiological sampling and analysis

Phillips, Stephen James McGregor January 2011 (has links)
The aim of the thesis is to improve the strategy for exploration of life on Mars and potentially other planetary bodies. This was achieved through the analysis of terrestrial analogues, particularly for targets on the surface of Mars. The search for evidence of life requires optimising several aspects including choice of samples, sample preparation and sample analysis. Analogues selected include snow/ice, evaporites and weathered volcanics. The determination of optimal parameters for extraction of biomarkers was performed on carbon-rich and carbon-poor samples using powdered limestone-shale pairs and on weathered basalt. For all samples, extraction efficiency increased (i) up to about 35°C then did not increase further with temperature; (ii) with smaller grain size; (iii) up to 24 hours extraction time then did not increase further. These data indicate that extraction protocols could be optimised in advance. Dry core drilling experiments showed that the resultant powder obscured visual observation, the range of particle sizes did not allow for the most efficient extraction of organics, and the core powder contained less biomarkers than the core as a result of heating. Extracts of melted Cairngorm snow/ice contained a range of n-alkanols up C18 and extracts of particulate matter contained n-alkanols up to C29. High molecular weight biomarkers are poorly soluble in water, emphasising the importance of optimising the extraction protocol. Samples of snow containing snow algae were successfully analysed for biological pigments using Surface Enhanced Raman Spectroscopy. The development of a bioluminescence assay for the detection of ATP was undertaken in the Cairngorm mountains during a summer and winter season. The detection of ATP was optimised by filtration. An assessment of the potential for site selection, on basalt, from visual parameters, proved that fracture density had the clearest correlation to ATP levels determined by bio-assay. Areas of high fracture density can be detected from Mars orbit, therefore such data could be used to highlight areas most likely to harbour microbes on Mars. The research has shown that terrestrial analogues can yield valuable information on how to optimise different stages of the analysis of a range of rock types that may be expected on Mars.
3

Molecular microbial ecology of Mars-like environments on earth, for application in astrobiology

Chan, Wai, Olivia., 陳卉. January 2012 (has links)
Astrobiology is a multidisciplinary topic that addresses the origin, distribution and evolution of life in the universe. One of the key questions relates to whether life could have evolved on other planetary bodies, and Mars has been the major focus. Biologists contribute to this question by studying the ecology of extreme environments on Earth that share closest analogy to Mars’ past or present environment. In this thesis, molecular-level interrogations were used to address some aspects of microbial biodiversity, ecology and stress tolerance in two such extreme environments. The high-altitude cold and intense UV irradiance of central Tibet was selected as an analogue for Mars surface today, whilst cold alkaline high-carbonate freshwater lakes were chosen as an analogue for Mars’ previous late wet phase. Biological soil crusts from central Tibet supported a diverse microflora and these were variously bacteria or eukarya dominated. The relatively well-developed eukarya-dominated crusts were characterized and showed they comprised of Stichococcus bacillaris, plus alphaproteobacteria, betaproteobacteria, bacteroidetes and gemmatimonadetes. In order to evaluate the diversity of radiation-tolerant taxa in these soils, samples were exposed to ionizing radiation and viability, physiology and phylogenetic identity determined. The most radio-tolerant taxa isolated and characterized were from the radiation tolerant phylum Deinococci (15kGy), whilst a relatively diverse range of Actinobacteria, Bacilli, Cyanobacteria and Proteobacteria were also recovered after exposure to doses up to 10kGy. This implies the high-radiation environment has selected for tolerance among diverse phyla, with tolerances that far exceed environmental exposure. It is not known at this stage if they all employ similar protective strategies. Microbial reefs that have developed in cold alkaline lakes in British Columbia were studied as analogues for a late-wet Mars environment. Molecular ecological analysis revealed that communities consisted largely of of Proteobacteria (alpha), Cyanobacteria (Leptolyngbya) and Acidobacteria, with similarities in community assembly to marine stromatolites. Microbial diversity varied spatially and temporally within microbialites, and indicated that geographically proximal structures can develop with different communities. Significant changes also occur between summer and winter when the lake surface is frozen. Investigation of other nearby lakes with similar geochemistry but not supporting microbialites revealed extensive microbial mats. These developed in the presence of relatively high concentrations of methane or sulfate, and their biodiversity reflected this with several putative methanotrophic and sulphate utilizing taxa identified. No obvious cues that inhibit or promote microbialite formation were observed in this study. / published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
4

Growth And Survival Of Bacteria In Simulated Martian Conditions

Berry, Bonnie 01 January 2008 (has links)
Escherichia coli and Serratia liquefaciens, two common microbial spacecraft contaminants known to replicate under low atmospheric pressures of 25 mb, were tested for growth and survival in simulated martian conditions. Stressors of high salinity, low temperature, and low pressure were screened alone and in combination to determine how they might affect microbial activity. Growth and survival of E. coli and S. liquefaciens under low temperatures (30, 20, 10, or 5 °C) with increasing concentrations (0, 5, 10, or 20 %) of three salts believed to be present on the surface of Mars (MgCl2, MgSO4, NaCl) were monitored over 7 d. Results indicated higher growth rates for E. coli and S. liquefaciens at 30 and 20 °C and in solutions without salt or in 5 % concentrations. No increase in cell density occurred under the highest salt concentrations at any temperatures tested; however, survival rates were high, especially at 10 and 5 °C. Growth rates of E. coli and S. liquefaciens with and without salts at 1013, 100, or 25 mb of total atmospheric pressure were robust under all pressures. In a final experiment, E. coli was maintained in Mars-simulant soils in a Mars Simulation Chamber. Temperatures within the chamber were changed diurnally from -50 °C to 20 °C; UV light was present during daytime operation (8 hrs), and pressure was held at a constant 7.1 mb in a Mars atmosphere for 7 d. Results from the full-scale Mars simulation indicated that E. coli failed to increase its populations under simulated Mars conditions, but was not killed off by the low pressure, low temperature, or high salinity conditions. Escherichia coli, and potentially other bacteria from Earth, may be able to survive on Mars. Surviving bacteria may interfere with scientific studies or, if future conditions become more favorable for microbial growth, modify the martian atmosphere and biogeochemistry.
5

Biosignature storage in sulfate minerals- synthetic and natural investigations of the jarosite group minerals

Kotler, Julia Michelle. January 2009 (has links)
Thesis (PHD)--University of Montana, 2009. / Contents viewed on December 18, 2009. Title from author supplied metadata. Includes bibliographical references.
6

The experimental silicification of bacillus subtilis

Tenesch, Aaron Chase. January 2009 (has links)
Thesis (MS)--University of Montana, 2009. / Contents viewed on December 19, 2009. Title from author supplied metadata. Includes bibliographical references.
7

Využití Ramanovy spektroskopie pro identifikaci organických inkluzí minerálů pro účely exobiologie / Application of Raman spectroscopy for the identification of organic inclusions in minerals for the field of exobiology

Osterrothová, Kateřina January 2011 (has links)
The multidisciplinary field of astrobiology has grown rapidly in recent years. The major goals of research in the field have been the search for habitable environments both within and outside our solar system, the search for evidence of prebiotic chemistry and life on Mars and other bodies in our solar system, laboratory and field research into the origins and early evolution of life on Earth, and studies of the potential for life to adapt to challenges on Earth and in space. NASA and ESA are heavily focused on a number of upcoming exploratory missions (e.g., the Mars Science Laboratory, with its planned launch in the fall 2011; ExoMars 2018; and the follow-up Mars Sample Return missions beyond 2020). A Raman spectrometer is now being miniaturized for the ExoMars Rover Instrument Suite. This Raman instrument is expected to be used to identify organic compounds and mineral products that could be related to signatures of life, as well as provide a general mineralogical overview, especially those minerals produced by water- related processes. This thesis describes the results of laboratory investigation into the feasibility of Raman spectroscopy to detect different types of biomarkers (pigments, carboxylic acids, and aminoacids) first mixed in the mineral matrices and...
8

Assessing the Preservation Potential of Biogenic Features in Pre-Neogene Tufas and Travertines – Applications to Exobiology

Richardson, Justin 03 June 2005 (has links)
No description available.
9

Life at the end of worlds : modelling the biosignatures of microbial life in diverse environments at the end of the habitable lifetimes of Earth-like planets

O'Malley-James, Jack T. January 2014 (has links)
This thesis investigates how increased global mean temperatures on Earth, induced by the increase in the luminosity of the Sun as it ages, change the types of habitable environments on the planet at local scales over the next 3 Gyr. Rising temperatures enhance silicate weathering rates, reducing atmospheric CO₂ levels to below the threshold for photosynthesis, while simultaneously pushing environments past the temperature tolerances of plant and animal species. This leads to the end of all plant life and animal life (due to reduced food, O₂ and H₂O availability, as well as higher temperatures) within the next 1 Gyr. The reduction in the extent of the remaining microbial biosphere due to increasing temperatures and rapid ocean evaporation is then modelled, incorporating orbital parameter changes until all known types of life become extinct; a maximum of 2.8 Gyr from the present. The biosignatures associated with these changes are determined and the analysis extended to Earth-like extrasolar planets nearing the end of their habitable lifetimes. In particular, the stages in the main sequence evolutions of Sun-like stars within 10 pc are evaluated and used to extrapolate the stage that an Earth-analogue planet would be at in its habitable evolution, to determine the best candidate systems for a far-future Earth-analogue biosphere, highlighting the Beta Canum Venaticorum system as a good target. One of the most promising biosignatures for a microbial biosphere on the far-future Earth (and similar planets) may be CH₄, which could reach levels in the atmosphere that make it more readily detectable than it is for a present-day Earth-like atmosphere. Determining these biosignatures will help expand the search for life to the wider range of environments that will be found as the habitable exoplanet inventory grows and planets are found at different stages in their habitable evolution.
10

Využití přenosných Ramanovských spektrometrů pro detekci sulfátů: potenciální aplikace v exobiologii / Use of portable Raman spectrometers for detection of sulfates: potential application in exobiology

Košek, Filip January 2014 (has links)
The detection of mineral phases under in situ conditions has become a primary but sometimes also challenging task in many fields of geoscience. Raman spectroscopy has been used as a powerful tool for the identification of various minerals and organic compounds. The advantages and the relative simplicity made this method a promising choice in the future planetary exploration missions to Mars. The deposits of aqueous minerals including sulfates have been found on the Martian surface. With the development of miniaturized handheld spectrometers there is a need for evaluation of Raman spectroscopy as a method of identification of sulfate phases in their natural conditions. In the first part of this work a handheld spectrometer equipped with 532 nm excitation laser was tested under laboratory conditions during which the ability to distinguish mineral samples representing sulfates of different chemical composition and different degree of hydration was investigated. In the second part, two handheld Raman spectrometers equipped with 532 and 785 nm excitation lasers were used for the characterization of sulfate phases on sites of their natural occurrence located in the Czech Republic. The quality of the Raman spectra acquired under outdoor conditions by both spectrometers was rather average but sufficient to...

Page generated in 0.0438 seconds