• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 21
  • 10
  • 9
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 128
  • 47
  • 43
  • 33
  • 27
  • 23
  • 22
  • 21
  • 19
  • 18
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Observing Transiting Exoplanets: Removing Systematic Errors To Constrain Atmospheric Chemistry And Dynamics

Zellem, Robert Thomas January 2015 (has links)
The >1500 confirmed exoplanets span a wide range of planetary masses (~1 M_Earth – 20 M_Jupiter), radii (~0.3 R_Earth – 2 R_Jupiter), semi-major axes (~0.005 – 100 AU), orbital periods (~0.3 – 1 x 10⁵ days), and host star spectral types. The effects of a widely-varying parameter space on a planetary atmosphere's chemistry and dynamics can be determined through transiting exoplanet observations. An exoplanet's atmospheric signal, either in absorption or emission, is on the order of ~0.1% which is dwarfed by telescope-specific systematic error sources up to ~60%. This thesis explores some of the major sources of error and their removal from space- and ground-based observations, specifically Spitzer/IRAC single-object photometry, IRTF/SpeX and Palomar/TripleSpec low-resolution single-slit near-infrared spectroscopy, and Kuiper/Mont4k multi-object photometry. The errors include pointing-induced uncertainties, airmass variations, seeing-induced signal loss, telescope jitter, and system variability. They are treated with detector efficiency pixel-mapping, normalization routines, a principal component analysis, binning with the geometric mean in Fourier-space, characterization by a comparison star, repeatability, and stellar monitoring to get within a few times of the photon noise limit. As a result, these observations provide strong measurements of an exoplanet's dynamical day-to-night heat transport, constrain its CH₄ abundance, investigate emission mechanisms, and develop an observing strategy with smaller telescopes. The reduction methods presented here can also be applied to other existing and future platforms to identify and remove systematic errors. Until such sources of uncertainty are characterized with bright systems with large planetary signals for platforms such as the James Webb Space Telescope, for example, one cannot resolve smaller objects with more subtle spectral features, as expected of exo-Earths.
22

Multi-planet Extra-solar Systems: Tides and Classical Secular Theory

Van Laerhoven, Christa Lynn January 2014 (has links)
In a multi-planet system, gravitational interactions cause orbital eccentricity variations. For non-resonant systems, classical secular theory reveals that the eccentricities are vector sums of contributions from several eigenmodes. Examination of the eigenvectors often reveals subsets of planets that interact especially strongly as dynamical groups. Perturbations from other sources, such as tides, are shared among the planets through the secular interactions. If one planet's eccentricity is tidally damped, all the eigenmodes damp so as to leave a signature on their amplitudes. Therefore, if one desires to include some a priori tidal damping in an orbital fit, solutions should not assume the current eccentricity of that planet to be low, but rather for the eigenmodes that damp quickly to have low amplitude. The tidally perturbed planet may retain a substantial eccentricity, because some eigenmodes will be longer-lived. The secular eigenmodes, including relative damping rates, have been calculated for all 72 non-resonant extra-solar systems with adequate data. Tides also affect evolution of planets' semi-major axes, which is coupled with eccentricity evolution. A planet that, alone, would be quickly circularized so as to not experience much semi-major axis migration, could rapidly be forced into the star in the presence of an outer planet. Also, though such an inner planet may now be gone, the eccentricity of the outer planet could have been damped due to tides that acted on the inner planet. Any inferences about the primordial orbits of observed planets must consider these effects. For systems where the inner planet has not yet reached the star, the planets' eccentricities can be constrained for any particular assumed tidal dissipation factor Q', e.g. for the KOI-543 system, if the inner planet is rocky, the eccentricities must be<0.001. The habitable zone around low-mass stars is close to the star, precisely where tides are important. Low-mass stars are very long lived, and can be very old currently. A habitable planet likely needs tectonics for cycles that regulate the atmosphere, but a planet's internal heat will decay over long timescales. However, an outer planet could maintain the inner planet's eccentricity, allowing tidal heating to maintain long-term habitability. Secular interactions, coupled with tidal effects, may be critical for planetary habitability.
23

Atmospheric Circulation of Hot Jupiters and Super Earths

Kataria, Tiffany January 2014 (has links)
This dissertation explores the atmospheric circulation of extrasolar planets ranging from hot Jupiters to super Earths. For each of these studies, I utilize a three-dimensional circulation model coupled to a state-of-the-art, plane-parallel, two-stream, non-grey radiative transfer model dubbed the SPARC/MITgcm. First, I present models of the atmospheric circulation of eccentric hot Jupiters, a population which undergoes large variations in flux throughout their orbits. I demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits. For a select number of model integrations, I generate full-orbit lightcurves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what is seen in infrared (IR) lightcurves. Next, I present circulation models of WASP-43b, a transiting hot Jupiter that is joining the ranks of HD 189733b and HD 209458b as a 'benchmark' hot Jupiter, with a wide array of observational constraints from the ground and space. Here I utilize the robust dataset of spectrophotometric observations taken with the Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (HST) to interpret my model results. I find that an atmospheric composition of 5x solar provides the best match to the data, particularly in emission. Lastly, I present atmospheric simulations of the super Earth GJ 1214b, exploring the planet's circulation as a function of atmospheric metallicity and composition. I find that atmospheres with a low mean-molecular weight have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity leads to shallower atmospheric heating, larger day-night temperature variations and hence stronger superrotation. In comparison, atmospheres with a high mean-molecular weight have larger day-night and equator-to-pole temperature variations than low mean-molecular weight atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. By comparing emergent flux spectra and lightcurves for 50x solar and water-dominated compositions, I show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. In sum, these three studies explore exoplanet atmospheric circulation as a function of mass, radius, gravity, rotation rate, eccentricity and orbital distance.
24

Observational Methods for the Study of Debris Disks: Gemini Planet Imager and Herschel Space Observatory

Draper, Zachary Harrison 03 December 2014 (has links)
There are many observational methods for studying debris disks because of constraints imposed on observing their predominately infrared wavelength emission close to the host star. Two methods which are discussed here are ground-based high contrast imaging and space-based far-IR emission. The Gemini Planet Imager (GPI) is a high contrast near-IR instrument designed to directly image planets and debris disks around other stars by suppressing star light to bring out faint sources nearby. Because debris disks are intrinsically polarized, polarimetry offers a useful way to enhance the scattered light from them while suppressing the diffracted, unpolarized noise. I discuss the characterization of GPI's microlens point spread function (PSF) in polarization mode to try to improve the quality of the processed data cubes. I also develop an improved flux extraction method which takes advantage of an empirically derived high-resolution PSF for both spectral and polarization modes. To address the instrumental effects of flexure, which affect data quality, I develop methods to counteract the effect by using the science images themselves without having to take additional calibrations. By reducing the number of calibrations, the Gemini Planet Imager Exoplanet Survey (GPIES) can stand to gain ~66 hours of additional on-sky time, which can lead to the discovery of more exoplanetary systems. The Herschel Space Observatory offers another method for observing debris disks which is ideally suited to measure the peak dust emission in the far-IR. Through a careful analysis, we look at 100/160 μm excess emission around λ Boo stars, to differentiate whether the emission is from a debris disk or a bowshock with the interstellar medium. It has been proposed that the stars' unusual surface abundances are due to external accretion of gas from those sources. We find that the 3/8 stars observed are well resolved debris disks and the remaining 5/8 were inconsistent with bowshocks. To provide a causal explanation of the phenomenon based on what we now know of their debris disks, I explore Poynting-Robertson (PR) drag as a mechanism for secondary accretion via a debris disk. However, I find that the accretion rates are too low to cause the surface abundance anomaly. Further study into the debris disks in relation to stellar abundances and surfaces are required to rule out or explain the λ Boo phenomenon through external accretion. / Graduate / 0606 / zhd@uvic.ca
25

Shedding new light on old data : finding new results for exoplanet science in archival data

Hedges, Christina Louise January 2017 (has links)
In Chapter 2 of this thesis I present my database of molecular absorption cross sections. These were developed using public molecular transition line-lists (from the ExoMol group). I use them to find limitations in the modelling of exoplanet atmospheres due to pressure broadening. Pressure broadening, where collisions between molecules in atmospheres cause a Lorentzian broadening of molecular transitional lines, is little understood in the field. In this chapter I consider its effects on real exoplanet atmosphere observations, both with current and future instruments. I show that pressure broadening may affect future observations of exoplanets in the JWST era. Pressure broadening primarily affects cooler, small exoplanets such as Earth analogues. In Chapter 3 I present the pipeline I have developed to reduce HST WFC3 spectra of exoplanet hosts during transits to create transmission spectra. This code corrects several instrumental systematics, from varying dark signal in the detector to subpixel shifts in the target position over time. By creating a pipeline to process all targets, regardless of observing strategy, systematics are dealt with uniformly and different planets’ spectra can be meaningfully compared. I show that the height of the water feature in 30 unique exoplanets’ transmission spectra is strongly correlated with the most simplistic absorption model. I use this to predict a list of the best future targets for observations with HST WFC3 to find water. In Chapter 4 I discuss my work with the stellar spectra from WFC3, which utilise the sub-pixel shifts in target position to oversample the spectra and increase the resolution. I have compared these exoplanet host stellar spectra with stellar models to investigate how well stellar atmosphere models describe the near IR. I find a small discrepancy in temperature when WFC3 alone is used to assess the stellar temperature, particularly with cooler stars. I attribute this firstly to an error in the WFC3 sensitivity curve and secondly to an inaccuracy in models of cool, small stars due to molecular absorption. In Chapter 5 I present my work on K2 light curve data using machine learning to find young stellar objects that display unusual, transit-like behaviour. These objects are known as dipper stars due to their distinctive occultations with depths of 10-50% in flux and very fast orbital periods of a few hours to a few days. Such large occultations are difficult to explain and are currently attributed to material at the inner edge of the protoplanetary disk. This behaviour is often variable and aperiodic, suggesting that the occulting material is changing in morphology on the time scale of a single orbit. Using python’s scikit-learn I have developed a code that utilises a Random Forest algorithm to classify stars in K2 Campaign Field 2 and distinguish these objects from other types of variables, such as eclipsing binaries and pulsating stars. This method has proved very successful and has allowed me to nearly quadruple the number of known dipper candidates in the Upper Scorpius and Rho Ophiuchus regions.
26

Trans-Neptunian and Exosolar Satellites and Dust: Dynamics and Surface Effects

January 2013 (has links)
abstract: Solar system orbital dynamics can offer unique challenges. Impacts of interplanetary dust particles can significantly alter the surfaces of icy satellites and minor planets. Impact heating from these particles can anneal away radiation damage to the crystalline structure of surface water ice. This effect is enhanced by gravitational focusing for giant planet satellites. In addition, impacts of interplanetary dust particles on the small satellites of the Pluto system can eject into the system significant amounts of secondary intra-satellite dust. This dust is primarily swept up by Pluto and Charon, and could explain the observed albedo features on Pluto's surface. In addition to Pluto, a large fraction of trans-neptunian objects (TNOs) are binary or multiple systems. The mutual orbits of these TNO binaries can range from very wide (periods of several years) to near-contact systems (less than a day period). No single formation mechanism can explain this distribution. However, if the systems generally formed wide, a combination of solar and body tides (commonly called Kozai Cycles-Tidal Friction, KCTF) can cause most systems to tighten sufficiently to explain the observed distributions. This KCTF process can also be used to describe the orbital evolution of a terrestrial-class exoplanet after being captured as a satellite of a habitable-zone giant exoplanet. The resulting exomoon would be both potentially habitable and potenially detectable in the full Kepler data set. / Dissertation/Thesis / Ph.D. Astrophysics 2013
27

Exoplanetas, Extremófilos e Habitabilidade / Exoplanets, Extremophiles and Habitability

Luander Bernardes 26 November 2012 (has links)
O principal objetivo do trabalho foi estimar a possibilidade de sobrevivência de micro-organismos extremófilos na superfície de exoplanetas conhecidos, assim como na superfície de seus eventuais satélites naturais. Foi utilizado um modelo que simula a atmosfera terrestre primordial, composta principalmente por nitrogênio, água e dióxido de carbono. E em se tratando de extremófilos, esses cálculos não foram limitados à Zona Habitável dos sistemas planetários, pois esse conceito foi estendido para uma região mais ampla, a Zona Extremófila, onde a vida pode existir. Extremófilos são micro-organismos terrestres que vivem sob condições extremas de temperatura, nível de radiação, umidade, pressão, salinidade, pH, etc. . Eles são candidatos naturais para habitarem meios ditos extraterrestres onde tais condições são eventualmente encontradas. Alguns exemplos desses ambientes em nosso sistema solar são: Marte, Titã (satélite de Saturno) e Europa (satélite de Júpiter). Há algumas centenas de planetas orbitando outras estrelas (exoplanetas) e a maioria deles são gigantes gasosos, em particular Hot Jupiters. A temperatura superficial de um planeta depende fortemente de seu albedo, de sua distância orbital, de condições geodinâmicas intrínsecas, além do tipo espectral de sua estrela hospedeira. A estimativa dessa temperatura foi obtida considerando o ciclo silicato-carbono e um balanço de energia global, que contribuiram para se obter estimativas da pressão parcial atmosférica devido ao dióxido de carbono e da temperatura média, na superfície dos planetas e/ou de seus satélites hipotéticos. Os eventuais satélites naturais de planetas gigantes podem abrigar vida e essa possibilidade foi testada através da análise das condições de estabilidade orbital desses corpos celestes. Os resultados deste trabalho deverão fornecer subsídios para a hipótese da panspermia. / The main objective of this study is to estimate the chance of survival of microorganisms (extremophiles) on the surface of known exoplanets, as well as on the surface of its potential natural satellites. We used a model that simulates the primordial atmosphere composed by, primarily, nitrogen, water and carbon dioxide. And when it comes to extremophiles, these calculations were not limited to the Habitable Zone of planetary systems, since this concept was extended to a wider region, the Extremophile Zone, where life can exist. Extremophiles are terrestrial microorganisms living under extreme conditions of temperature, light level, humidity, pressure, salinity, pH, etc ... They are natural candidates for living in habitats considered extraterrestrials where such conditions are encountered eventually. Examples of such environments in our solar system are: Mars, Titan (moon of Saturn) and Europe (satellite of Jupiter). There are hundreds of planets orbiting other stars (exoplanets) and most of them are gas giants, particularly Hot Jupiters. The surface temperature of a planet/moon depends heavily on its albedo, its orbital distance, of geodynamic conditions intrinsic, in addition to the spectral type of their host star. The estimate of this temperature was obtained considering the carbon-silicate cycle and a global energy balance, which contributed to obtain estimates of the partial pressure due to atmospheric CO2 and the average temperature on the surface of planets and/or their hypothetical satellites. Natural satellites of giant planets may harbor life, and this possibility was tested by analyzing the conditions of orbital stability of these heavenly bodies. The results of this study should provide support for the hypothesis of panspermia.
28

The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks

Morrison, Sarah Jane, Morrison, Sarah Jane January 2017 (has links)
Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales $\sim$10 Myr to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two planets even with plantesimal-driven migration. These efforts begin to probe the types of potential planets carving gaps in disks of different evolutionary stages and at wide orbit separations on scales similar to our outer Solar System.
29

The Primary Atmospheres of Planets: The Formation, The Impact on Planet Formation and How to Characterize Them

January 2020 (has links)
abstract: Planets are generally believed to form in protoplanetary disks within a few million years (Myr) to several hundred Myr. But planetary embryos or protoplanets likely exist before disk gas dissipates (in three to ten Myr), capturing H2 -rich primary atmospheres from the nebula. Exploring these primordial atmospheres of planets provides a pathway to understanding the origins and the diversity of planets in the solar system and beyond. In this dissertation, I studied the primary atmospheres by modeling their formation, their impacts on planet formation, and determining methods to characterize them on exoplanets. First, I numerically investigated the flow structures and dynamics of the primary atmospheres accreted on Earth-sized planets with eccentric orbits. Such planets can generate atmosphere-stripping bow shocks, as their relative velocities to the gas are generally supersonic. The atmospheres are three to four orders of magnitude less massive than those of planets with circular orbits. Hydrodynamic simulations also revealed large-scale recycling gas flow in the post-shock regions. This study provides important insights into the impacts of migration and scattering on primary atmospheres. Second, I looked into how the presence of the primary atmosphere affects the trajectories of chondrule precursors passing through a planetary bow shock. To determine what magnetic fields chondrules were exposed to as they cooled below their Curie points, I computed the gas properties and magnetic diffusion rates in the bow shock region of a planet with and without the primary atmosphere. I concluded that, if melted in planetary bow shocks, most chondrules were cooled in the far downstream and they probably recorded the background nebular field. Last, I studied the characterization of cloudy primary atmospheres on exoplanets using a Bayesian retrieval approach. I focused on obtaining bulk cloud properties and the impact of clouds on constraining various atmospheric properties through transmission spectroscopy using the James Webb Space Telescope (JWST). Most key atmospheric and cloud inferences can be well constrained in the wavelength range (0.6 – 11 µ m) but there are different optimal wavelengths for constraining atmosphere or cloud parameters. Other results including degeneracies among cloud parameters can also serve as a guideline for future observers. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2020
30

Simulating Systematic Errors in Exoplanetary Transits for the James Webb Space Telescope

Wright, David C, III 01 January 2021 (has links)
The James Webb Space Telescope (JWST) is a next-generation space telescope that will be capable of making transformative observations of planetary transits. As its launch date grows ever closer, it becomes imperative that astronomers have access to accurate simulations of JWST observations in order to best plan observations and devise data analysis pipelines. Unfortunately, available simulation tools do not provide the most accurate or realistic simulations, including noise and systematic errors. In this thesis, I present an open-source time-domain simulator of planetary transits that is capable of accurately modeling these effects in observations made by JWST.

Page generated in 0.0457 seconds