1 |
Observational, numerical, and laboratory methods in high contrast imagingGerard, Benjamin Lionel 27 July 2016 (has links)
The search to directly image and characterize exoplanets that are initially hidden below the stellar and instrumental noise relies on the use of both extreme adaptive optics (AO) and a subsequent point spread function (PSF) subtraction pipeline. In this thesis I present my research on both real-time AO techniques and post-processing PSF subtraction techniques. First, I present a new PSF subtraction algorithm designed to image the HR 8799 debris disk using the Hubble Space Telescope. I find an over-luminosity after PSF subtraction that may be from the inner disk and/or planetesimal belt components of this system, but ultimately conclude that this is likely a non-detection as a result of telescope stability and broadband chromatic effects. Thus, assuming a non-detection, I derive upper limits on the HR 8799 dust belt mass in small grains, consistent with measurements of other debris disk halos. This important result suggests that a detection may not be possible until the rise of future, more stable space telescopes. Next, I present a new PSF subtraction algorithm applied to current campaign data from the Gemini Planet Imager (GPI), designed to optimize the GPI planet detection sensitivity of narrow orbit planets. My results, while still being investigated, seem to show that current algorithms are already optimized, and that limited gains can be achieved with my new algorithm. Finally, I apply a new real-time AO nulling technique, called super-Nyquist wavefront control (SNWFC), to be used on future 30 m class telescopes to image wide-orbit exoplanets. I demonstrate application of SNWFC in both a deterministic laboratory experiment and coronagraphic simulations using an interferometric nulling technique, suggesting that this technique would allow higher SNR characterization of wide-orbit exoplanets on future telescopes. / Graduate / 0606, 0752
|
2 |
In Pursuit of New Worlds: Searches for and Studies of Transiting Exoplanets from Three Space-Based ObservatoriesBallard, Sarah 23 July 2012 (has links)
This thesis presents studies of transiting exoplanets using observations gathered in large part from space, with the NASA EPOXI Mission, the Spitzer Space Telescope, and the Kepler Mission. The first part of this thesis describes searches for additional transiting planets in known exoplanet systems, using time series photometry gathered as part of the NASA EPOXI Mission. Using the EPOXI light curves spanning weeks for each star, we searched six exoplanetary systems for signatures of additional transiting planets. These six systems include five hosts to hot Jupiters: HAT-P-4, TrES-3, TrES-2, WASP-3, and HAT-P-7, and one host to a hot Neptune: GJ 436. We place upper limits on the presence of additional transiting planets in the super-Earth radius range for GJ 436 in Chapter 2, and in the Neptune-to-Saturn radius range for the other five systems in Chapter 4. Chapter 3 details a search for additional transits of a hypothesized planet smaller than the Earth, whose presence was suggested by the EPOXI observations of GJ 436. In that study, we demonstrate the sensitivity of Warm Spitzer observations to transits of a sub-Earth-sized planet. The fifth chapter details the characterization and validation of the Kepler-19 system, which hosts a transiting 2.2 \(R_{\bigoplus}\) planet, Kepler-19b. We demonstrate the planetary nature of the transit signal with an analysis that combines information from high-resolution spectroscopy, the shape of the transit light curve, adaptive optics imaging, and near-infrared transits of the planet. The sinusoidal variation in the transit times of Kepler-19b indicates the presence of an additional perturbing body, and comprises the first definitive detection of a planet using the transit timing variation method. While we cannot uniquely determine the mass and orbital period of Kepler-19c, we establish that its mass must be less than 6 times the mass of Jupiter. The sixth chapter presents evidence for the validation of a 2.0 \(R_{\bigoplus}\) planet residing in the habitable zone of a low-mass star, Kepler Object of Interest 1361.01. We discuss the theoretical composition of the planet, and address issues specific to habitability of planets orbiting M dwarfs. / Astronomy
|
3 |
Nulling interferometers for space-based high-contrast visible imaging and measurement of exoplanetary environmentsHicks, Brian Andrew January 2012 (has links)
Thesis (Ph.D.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / This dissertation presents the legacy, theory, design, characterization, and application prospects of a fully symmetric monolithic nulling interferometer (nuller). A nuller's function is to destructively interfere light originating from a bright, on-axis, unresolved source in order to lower its contrast with faint, off-axis sources of light in the field of view. The primary application lies in astronomical instrumentation, serving as an enabling technology for directly imaging exoplanets and measuring exozodiacal dust and debris disks, the planetary system evolutionary components around nearby stars. Typical on-sky planet/star flux ratios are 1:109 or less in the visible. Mitigating this contrast is key to spectroscopic study of exoplanets, which aims to characterize exoplanetary atmospheres and potentially locate biosignatures on exo-Earths.
Within the past decade, adaptive optics-equipped breadboard demonstrations of nullers and other coronagraphs have shown the capability to image nearby (< 30 lightyears) extrasolar analogs to Jupiter with a 0.5 meter diameter telescope in the visible. The quiet laboratory environments that have been produced to demonstrate this capability do not reflect those of typical ground-based observatories where thermal drifts perturb optical alignment and atmospheric turbulence perturbs the source wavefront. Space-based platforms circumvent the atmosphere problem, but are still subjected to thermal instabilities and their associated risks. Robust optical systems must be designed and flight-tested in order to address such risks and provide grounds for their inclusion in the design of future exo-Earth imaging satellites. Sub-orbital platforms such as sounding rockets and high-altitude balloons provide a rapid, lowcost means of providing heritage for such optical systems while also delivering significant scientific results. The primary risk inherent with these platforms are harsh transient environmental conditions, for which, similar to an orbital platform, robust optical systems are necessary.
A novel feature of the nuller described in this work is its monolithic design, which greatly enhances optical stability, the primary obstacle plaguing all high-contrast imaging efforts. Additional design benefits include theoretical achromatic performance and an inner working angle that is 2-4 times smaller than other coronagraph designs, enabling its use with proportionally smaller telescopes. / 2031-01-01
|
4 |
The Detectability and Constraints of Biosignature Gasses in the Near & Mid-Infrared from Transit Transmission SpectroscopyJanuary 2019 (has links)
abstract: The James Webb Space Telescope (JWST) is expected to revolutionize the current understanding of Jovian worlds over the coming decade. However, as the field pushes towards characterizing cooler, smaller, “terrestrial-like” planets, dedicated next-generation facilities will be required to tease out the small spectral signatures indicative of biological activity. Here, the feasibility of determining atmospheric properties, from near to mid-infrared transmission spectra, of transiting temperate terrestrial M-dwarf companions, has been evaluated. Specifically, atmospheric retrievals were utilized to explore the trade space between spectral resolution, wavelength coverage, and signal-to-noise on the ability to both detect molecular species and constrain their abundances. Increasing spectral resolution beyond R=100 for near-infrared wavelengths, shorter than 5um, proves to reduce the degeneracy between spectral features of different molecules and thus greatly benefits the abundance constraints. However, this benefit is greatly diminished beyond 5um as any overlap between broad features in the mid-infrared does not deconvolve with higher resolutions. Additionally, the inclusion of features beyond 11um did not meaningfully improve the detection significance nor abundance constraints results. The findings of this study indicate that an instrument with continuous wavelength coverage from approximately 2-11um and with a resolution of R~50-300, would be capable of detecting H2O, CO2, CH4, O3, and N2O in the atmosphere of an Earth-analog transiting an M-dwarf (magK=8.0) within 50 transits, and obtain better than an order-of-magnitude constraint on each of their abundances.
The Origins Space Telescope (Origins) is one of four flagship mission concepts, under review by the 2020 Decadal Survey, that may take the mantle of the next-generation space-based observatory. In conjunction with this research, a secondary trade space study was performed on behalf of the Origins Exoplanets Working Group. The primary purpose of this collaboration was to provide a scientific basis to the technical specifications for the mid-infrared detectors onboard the Mid-Infrared Spectrometer Camera Transit Spectrometer (MISC-T) instrument. The results of this work directly contributed to the alteration of the official technical specifications of the instrument design concept. / Dissertation/Thesis / Masters Thesis Astrophysics and Astronomy 2019
|
5 |
Adaptive Optics for Directly Imaging Planetary SystemsBailey, Vanessa Perry January 2015 (has links)
In this dissertation I present the results from five papers (including one in preparation) on giant planets, brown dwarfs, and their environments, as well as on the commissioning and optimization of the Adaptive Optics system for the Large Binocular Telescope Interferometer. The first three Chapters cover direct imaging results on several distantly-orbiting planets and brown dwarf companions. The boundary between giant planets and brown dwarf companions in wide orbits is a blurry one. In Chapter 2, I use 3–5 μm imaging of several brown dwarf companions, combined with mid-infrared photometry for each system to constrain the circum-substellar disks around the brown dwarfs. I then use this information to discuss limits on scattering events versus in situ formation. In Chapters 3 and 4, I present results from an adaptive optics imaging survey for giant planets, where the target stars were selected based on the properties of their circumstellar debris disks. Specifically, we targeted systems with debris disks whose SEDs indicated gaps, clearings, or truncations; these features may possibly be sculpted by planets. I discuss in detail one planet-mass companion discovered as part of this survey, HD 106906 b. At a projected separation of 650 AU and weighing in at 11 Jupiter masses, a companion such as this is not a common outcome of any planet or binary star formation model. In the remaining three Chapters, I discuss pre-commissioning, on-sky results, and planned work on the Large Binocular Telescope Interferometer Adaptive Optics system. Before construction of the LBT AO system was complete, I tested a prototype of LBTI's pyramid wavefront sensor unit at the MMT with synthetically-generated calibration files. I present the methodology and MMT on-sky tests in Chapter 5. In Chapter 6, I present the commissioned performance of LBTIAO. Optical imperfections within LBTI limited the quality of the science images, and I describe a simple method to use the adaptive optics system to correct for the science camera's optical aberrations. Finally, in Chapter 7, I discuss the status of a more sophisticated method for correcting these optical aberrations in LBTI.
|
6 |
Characterising exoplanet atmospheres : Bayesian techniques for transit lightcurvesEvans, Thomas January 2014 (has links)
Precise measurements of transit lightcurves can be used to constrain the composition and structure of exoplanet atmospheres. Unfortunately, efforts to extract this information are usually hampered by the presence of correlated noise that is degenerate with the astrophysical signal of interest. A major theme of this thesis is the application of robust analysis methods to properly account for such degeneracies. In particular, I advocate the use of Bayesian inference for lightcurve fitting. For this study, the Bayesian framework is exploited by modelling lightcurves as Gaussian processes (GPs), which offer numerous advantages over traditional decorrelation methods. The main advantage is that GPs do not require a functional form to be specified for the poorly understood lightcurve systematics. Instead, the high-level properties of the signal covariance are parameterised, allowing complex correlations to be marginalised over relatively low-dimension parameter spaces. I use GP models to analyse transit and eclipse lightcurves for the hot Jupiters HD189733b, HD209458b, and HAT-P-32b. The work is spread over three separate projects. Firstly, I re-analyse the majority of the transits and eclipses that have been observed using the Spitzer Space Telescope Infrared Array Camera (IRAC) for HD189733b and HD20945b. The GP analyses generally produce uncertainties for inferred planet parameters that are factors of ~1-5 larger than those quoted in the literature. In a number of cases, I obtain results that are fundamentally different to those published previously, with significant implications for the understanding of the atmospheres. Secondly, I report an eclipse observation for HD189733b that was made using the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) over the 290-570nm wavelength range. Geometric albedos of Ag=0.37<sup>+12</sup><sub style='position: relative; left: -1.3em;'>-13</sub> and Ag=0.37<sup>+13</sup><sub style='position: relative; left: -1.3em;'>-12</sub> are measured in the wavelength ranges 290-450nm and 450-570nm, respectively. This represents the first ever multi-wavelength eclipse measurement made for an exoplanet at visible wavelengths. The nonzero albedo in the 290-450nm wavelength channel provides evidence for scattering in the atmosphere, possibly by haze/clouds or H2 molecules. The relatively low albedo in the 450-570nm wavelength channel is interpreted as being due to absorption by the wings of the Na 589nm doublet. Thirdly, I present two transit observations for HAT-P-32b made using the Nordic Optical Telescope (NOT) Andalucia Faint Object Spectrograph (ALFOSC) in multi-object spectroscopy mode over the 414-702nm wavelength range. A joint GP model is fit to the two white lightcurves produced by integrating the spectra over the full wavelength range. Spectroscopic lightcurves are also generated by binning into 32nm-wide wavelength channels, and preliminary lightcurve analyses are performed. The extracted transmission spectrum shows some evidence for absorption features, but this interpretation is currently very tentative. Further refinements to the data reduction and lightcurve analysis are suggested, which will allow the transmission spectrum to be evaluated more definitively.
|
7 |
First on-sky closed loop measurement and correction of atmospheric dispersionPathak, Prashant, Guyon, Olivier, Jovanovic, Nemanja, Lozi, Julien, Martinache, F., Minowa, Y., Kudo, T., Takami, H., Hayano, Y., Narita, N. 27 July 2016 (has links)
In the field of exoplanetary sciences, high contrast imaging is crucial for the direct detection of, and answering questions about habitability of exoplanets. For the direct imaging of habitable exoplanets, it is important to employ low inner working angle (IWA) coronagraphs, which can image exoplanets close to the PSF. To achieve the full performance of such coronagraphs, it is crucial to correct for atmospheric dispersion to the highest degree, as any leakage will limit the contrast. To achieve the highest contrast with the state-of-the-art coronagraphs in the SCExAO instrument, the spread in the point-spread function due to residual atmospheric dispersion should not be more than 1 mas in the science band. In a traditional approach, atmospheric dispersion is compensated by an atmospheric dispersion compensator (ADC), which is simply based on model which only takes into account the elevation of telescope and hence results in imperfect correction of dispersion. In this paper we present the first on-sky closed-loop measurement and correction of residual atmospheric dispersion. Exploiting the elongated nature of chromatic speckles, we can precisely measure the presence of atmospheric dispersion and by driving the ADC, we can do real-time correction. With the above approach, in broadband operation (y-H band) we achieved a residual of 4.2 mas from an initial 18.8 mas and as low as 1.4 mas in H-band only after correction, which is close to our science requirement. This work will be valuable in the field of high contrast imaging of habitable exoplanets in the era of the ELTs.
|
8 |
The Chemical Composition of Exoplanet-hosting Binary Star SystemsJanuary 2013 (has links)
abstract: A significant portion of stars occur as binary systems, in which two stellar components orbit a common center of mass. As the number of known exoplanet systems continues to grow, some binary systems are now known to harbor planets around one or both stellar components. As a first look into composition of these planetary systems, I investigate the chemical compositions of 4 binary star systems, each of which is known to contain at least one planet. Stars are known to vary significantly in their composition, and their overall metallicity (represented by iron abundance, [Fe/H]) has been shown to correlate with the likelihood of hosting a planetary system. Furthermore, the detailed chemical composition of a system can give insight into the possible properties of the system's known exoplanets. Using high-resolution spectra, I quantify the abundances of up to 28 elements in each stellar component of the binary systems 16 Cyg, 83 Leo, HD 109749, and HD 195019. A direct comparison is made between each star and its binary companion to give a differential composition for each system. For each star, a comparison of elemental abundance vs. condensation temperature is made, which may be a good diagnostic of refractory-rich terrestrial planets in a system. The elemental ratios C/O and Mg/Si, crucial in determining the atmospheric composition and mineralogy of planets, are calculated and discussed for each star. Finally, the compositions and diagnostics of each binary system are discussed in terms of the known planetary and stellar parameters for each system. / Dissertation/Thesis / M.S. Astrophysics 2013
|
9 |
Variability of Elemental Abundances in the Local Neighborhood and its Effect on Planetary SystemsJanuary 2014 (has links)
abstract: As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation in elemental abundances of nearby stars, the actual range in stellar abundances can be determined using statistical methods. This research emphasizes the diversity of stellar elemental abundances and how that could affect the environment from which planets form. An intrinsic variation has been found to exist for almost all of the elements studied by most abundance-finding groups. Specifically, this research determines abundances for a set of 458 F, G, and K stars from spectroscopic planet hunting surveys for 27 elements, including: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, La, Ce, Nd, Eu, and Hf. Abundances of the elements in many known exosolar planet host stars are calculated for the purpose investigating new ways to visualize how stellar abundances could affect planetary systems, planetary formation, and mineralogy. I explore the Mg/Si and C/O ratios as well as place these abundances on ternary diagrams with Fe. Lastly, I emphasize the unusual stellar abundance of τ Ceti. τ Ceti is measured to have 5 planets of Super-Earth masses orbiting in near habitable zone distances. Spectroscopic analysis finds that the Mg/Si ratio is extremely high (~2) for this star, which could lead to alterations in planetary properties. τ Ceti's low metallicity and oxygen abundance account for a change in the location of the traditional habitable zone, which helps clarify a new definition of habitable planets. / Dissertation/Thesis / Ph.D. Astrophysics 2014
|
10 |
The path to visible extreme adaptive optics with MagAO-2K and MagAO-XMales, Jared R., Close, Laird M., Guyon, Olivier, Morzinski, Katie M., Hinz, Philip, Esposito, Simone, Pinna, Enrico, Xompero, Marco, Briguglio, Runa, Riccardi, Armando, Puglisi, Alfio, Mazin, Ben, Ireland, Michael J., Weinberger, Alycia, Conrad, Al, Kenworthy, Matthew, Snik, Frans, Otten, Gilles, Jovanovic, Nemanja, Lozi, Julien 27 July 2016 (has links)
The next generation of extremely large telescopes (ELTs) have the potential to image habitable rocky planets, if suitably optimized. This will require the development of fast high order "extreme" adaptive optics systems for the ELTs. Located near the excellent site of the future GMT, the Magellan AO system (MagAO) is an ideal on-sky testbed for high contrast imaging development. Here we discuss planned upgrades to MagAO. These include improvements in WFS sampling (enabling correction of more modes) and an increase in speed to 2000 Hz, as well as an H2RG detector upgrade for the Clio infrared camera. This NSF funded project, MagAO-2K, is planned to be on-sky in November 2016 and will significantly improve the performance of MagAO at short wavelengths. Finally, we describe MagAO-X, a visible-wavelength extreme-AO "afterburner" system under development. MagAO-X will deliver Strehl ratios of over 80% in the optical and is optimized for visible light coronagraphy.
|
Page generated in 0.0436 seconds