• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sample Average Approximation of Risk-Averse Stochastic Programs

Wang, Wei 17 August 2007 (has links)
Sample average approximation (SAA) is a well-known solution methodology for traditional stochastic programs which are risk neutral in the sense that they consider optimization of expectation functionals. In this thesis we establish sample average approximation methods for two classes of non-traditional stochastic programs. The first class is that of stochastic min-max programs, i.e., min-max problems with expected value objectives, and the second class is that of expected value constrained stochastic programs. We specialize these SAA methods for risk-averse stochastic problems with a bi-criteria objective involving mean and mean absolute deviation, and those with constraints on conditional value-at-risk. For the proposed SAA methods, we prove that the results of the SAA problem converge exponentially fast to their counterparts for the true problem as the sample size increases. We also propose implementation schemes which return not only candidate solutions but also statistical upper and lower bound estimates on the optimal value of the true problem. We apply the proposed methods to solve portfolio selection and supply chain network design problems. Our computational results reflect good performance of the proposed SAA schemes. We also investigate the effect of various types of risk-averse stochastic programming models in controlling risk in these problems.

Page generated in 0.1237 seconds