• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Frictional Strength of the Creeping Segment of the San Andreas Fault

Coble, Clayton Gage 2010 December 1900 (has links)
The San Andreas Fault (SAF) near Parkfield, CA moves by a combination of aseismic creep and micro-earthquake slip. Measurements of in situ stress orientation, stress magnitude, and heat flow are incompatible with an average shear stress on the SAF greater than approximately 20 MPa. To investigate the micro-mechanical processes responsible for the low strength and creeping behavior, gouge samples from the 3 km-deep scientific borehole near Parkfield (the San Andreas Fault Observatory at Depth, SAFOD) are sheared in a triaxial rock deformation apparatus at conditions simulating those in situ, specifically a temperature of 100°C, effective normal stress of 100 MPa, pore fluid pressure of 25 MPa, and a Na-Ca-K pore fluid chemistry. The 2 mm-thick gouge layers are sheared to 4.25 mm at shear rates of 6.0, 0.6, 0.06, and 0.006 mu m/s. The mechanical data are corrected for apparatus effects and the strength of the jacketing material that isolates the sample from the confining fluid. Experiments indicate that gouge is extremely weak with a coefficient of friction of 0.14, and displays velocity and temperature strengthening behavior. The frictional behavior is consistent with the inferred in situ stress and aseismic creep observed at SAFOD. The low frictional strength likely reflects the presence of a natural fabric characterized by microscale folia containing smectite and serpentinite.

Page generated in 0.115 seconds