• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical methods for simulation of electrical activity in the myocardial tissue

Dean, Ryan Christopher 13 April 2009
Mathematical models of electric activity in cardiac tissue are becoming increasingly powerful tools in the study of cardiac arrhythmias. Considered here are mathematical models based on ordinary differential equations (ODEs) and partial differential equations (PDEs) that describe the behaviour of this electrical activity. Generating an efficient numerical solution of these models is a challenging task, and in fact the physiological accuracy of tissue-scale models is often limited by the efficiency of the numerical solution process. In this thesis, we discuss two sets of experiments that test ideas for making the numerical solution process more efficient. In the first set of experiments, we examine the numerical solution of four single cell cardiac electrophysiological models, which consist solely of ODEs. We study the efficiency of using implicit-explicit Runge-Kutta (IMEX-RK) splitting methods to solve these models. We find that variable step-size implementations of IMEX-RK methods (ARK3 and ARK5) that take advantage of Jacobian structure clearly outperform most methods commonly used in practice for two of the models, and they outperform all methods commonly used in practice for the remaining models. In the second set of experiments, we examine the solution of the bidomain model, a model consisting of both ODEs and PDEs that are typically solved separately. We focus these experiments on numerical methods for the solution of the two PDEs in the bidomain model. The most popular method for this task, the Crank-Nicolson method, produces unphysical oscillations; we propose a method based on a second-order L-stable singly diagonally implicit Runge-Kutta (SDIRK) method to eliminate these oscillations.<p> We find that although the SDIRK method is able to eliminate these unphysical oscillations, it is only more efficient for crude error tolerances.
2

Numerical methods for simulation of electrical activity in the myocardial tissue

Dean, Ryan Christopher 13 April 2009 (has links)
Mathematical models of electric activity in cardiac tissue are becoming increasingly powerful tools in the study of cardiac arrhythmias. Considered here are mathematical models based on ordinary differential equations (ODEs) and partial differential equations (PDEs) that describe the behaviour of this electrical activity. Generating an efficient numerical solution of these models is a challenging task, and in fact the physiological accuracy of tissue-scale models is often limited by the efficiency of the numerical solution process. In this thesis, we discuss two sets of experiments that test ideas for making the numerical solution process more efficient. In the first set of experiments, we examine the numerical solution of four single cell cardiac electrophysiological models, which consist solely of ODEs. We study the efficiency of using implicit-explicit Runge-Kutta (IMEX-RK) splitting methods to solve these models. We find that variable step-size implementations of IMEX-RK methods (ARK3 and ARK5) that take advantage of Jacobian structure clearly outperform most methods commonly used in practice for two of the models, and they outperform all methods commonly used in practice for the remaining models. In the second set of experiments, we examine the solution of the bidomain model, a model consisting of both ODEs and PDEs that are typically solved separately. We focus these experiments on numerical methods for the solution of the two PDEs in the bidomain model. The most popular method for this task, the Crank-Nicolson method, produces unphysical oscillations; we propose a method based on a second-order L-stable singly diagonally implicit Runge-Kutta (SDIRK) method to eliminate these oscillations.<p> We find that although the SDIRK method is able to eliminate these unphysical oscillations, it is only more efficient for crude error tolerances.
3

Comparison of numerical methods for solving a system of ordinary differential equations: accuracy, stability and efficiency

Amir Taher, Kolar January 2020 (has links)
In this thesis, we compute approximate solutions to initial value problems of first-order linear ODEs using five explicit Runge-Kutta methods, namely the forward Euler method, Heun's method, RK4, RK5, and RK8. This thesis aims to compare the accuracy, stability, and efficiency properties of the five explicit Runge-Kutta methods. For accuracy, we carry out a convergence study to verify the convergence rate of the five explicit Runge-Kutta methods for solving a first-order linear ODE. For stability, we analyze the stability of the five explicit Runge-Kutta methods for solving a linear test equation. For efficiency, we carry out an efficiency study to compare the efficiency of the five explicit Runge-Kutta methods for solving a system of first-order linear ODEs, which is the main focus of this thesis. This system of first-order linear ODEs is a semi-discretization of a two-dimensional wave equation.

Page generated in 0.0556 seconds