• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stabilized Explicit Time Integration for Parallel Air Quality Models

Srivastava, Anurag 09 November 2006 (has links)
Air Quality Models are defined for prediction and simulation of air pollutant concentrations over a certain period of time. The predictions can be used in setting limits for the emission levels of industrial facilities. The input data for the air quality models are very large and encompass various environmental conditions like wind speed, turbulence, temperature and cloud density. Most air quality models are based on advection-diffusion equations. These differential equations are moderately stiff and require appropriate techniques for fast integration over large intervals of time. Implicit time stepping techniques for solving differential equations being unconditionally stable are considered suitable for the solution. However, implicit time stepping techniques impose certain data dependencies that can cause the parallelization of air quality models to be inefficient. The current approach uses Runge Kutta Chebyshev explicit method for solution of advection diffusion equations. It is found that even if the explicit method used is computationally more expensive in the serial execution, it takes lesser execution time when parallelized because of less complicated data dependencies presented by the explicit time-stepping. The implicit time-stepping on the other hand cannot be parallelized efficiently because of the inherent complicated data dependencies. / Master of Science
2

Simulating Flood Propagation in Urban Areas using a Two-Dimensional Numerical Model

Gonzalez-Ramirez, Noemi 12 May 2010 (has links)
A two-dimensional numerical model (RiverFLO-2D) has been enhanced to simulate flooding of urban areas by developing an innovative wet and dry surface algorithm, accounting for variable rainfall, and recoding the model computer program for parallel computing. The model formulation is based on the shallow water equations solved with an explicit time-stepping element-by-element finite element method. The dry-wet surface algorithm is based on a local approximation of the continuity and momentum equations for elements that are completely dry. This algorithm achieves global volume conservation in the finite element, even for flows over complex topographic surfaces. A new module was implemented to account for variable rainfall in space and time using NEXRAD precipitation estimates. The resulting computer code was parallelized using OpenMP Application Program Interface, which allows the model to run up to 5 times faster on multiple core computers. The model was verified with analytical solutions and validated with laboratory and field data. Model application to the Malpasset dam break and Sumacarcel flooding event show that the model accurately predicts flood wave travel times and water depths for these numerically demanding real cases. To illustrate the predictive capability of the enhanced model, an application was made of the city of Sweetwater flooding in Miami-Dade County, FL caused by the Hurricane Irene. The simulation starts with dry bed and rainfall is provided by NEXRAD estimates. Integrating NEXRAD rainfall estimates, developing a novel dry-wet area algorithm and parallelizing RiverFLO-2D code, this dissertation presents a proof of concept to accurately and efficiently predict floods in urban areas, identifying future improvements along this line of research.

Page generated in 0.0862 seconds