Spelling suggestions: "subject:"exploração dde dados (computação)"" "subject:"exploração dde dados (omputação)""
1 |
Mineração de dados aplicados ao sistema integrado de administração financeira do governo federal - SIAFI : detecção de anomalias na emissão de notas de empenho / Data mining applied to the Sistema Integrado de Administração Financeira do Governo Federal SIAFI: auditing the application of federal fundsFerreira, Eduardo Chaves 18 June 2008 (has links)
Made available in DSpace on 2015-03-04T18:51:04Z (GMT). No. of bitstreams: 1
Resumo-Tese-EduardoChavesFerreira.pdf: 18235 bytes, checksum: e434cf2e49bcb76b9f366bc1c6efa575 (MD5)
Previous issue date: 2008-06-18 / In this work we propose a model to automatically detect irregularities in application of federal funds that may cause losses to the public treasury. The model uses data from the
Sistema Integrado de Administração Financeira do Governo Federal - SIAFI. This model was created to help the Brazilian Court of Audit (TCU) in auditing the application of federal
funds.
The model has two modules, one is an expert system that will have the rules take form the legislation and from the experience of experts from TCU. The other module is a data
mining module, that is composed by Behavior model and the detection part that uses Statistics techniques, Neural Networks and Fuzzy Logic to detect possible irregularities. / Esta tese tem por objetivo propor um modelo para a detecção automática de indícios de irregularidades na execução da despesa pública, baseado em dados extraídos do Sistema Integrado de Administração Financeira do Governo Federal - SIAFI. O modelo proposto foi desenvolvido para atuar como ferramenta auxiliar ao trabalho de fiscalização da Administração Pública executado pelo Tribunal de Contas da União.
As análises realizadas pelo modelo baseiam-se em dois procedimentos complementares: sistema especialista e mineração de dados. A primeira alternativa permite criar um repositório de regras de conhecimento, extraídas da legislação e da experiência de analistas do TCU. A mineração de dados busca de forma automática informações não triviais, que não possam ser facilmente explicitadas através das regras de conhecimento.
A principal contribuição do trabalho é a sistematização do procedimento de detecção, detalhando os componentes do modelo e a interação entre eles. Com o objetivo de validar o modelo proposto, é feita a implementação do componente de mineração de dados, caracterizado no trabalho por um modelo matemático de comportamento quanto à execução da despesa e por algoritmos que, utilizando o modelo de comportamento, permitem detectar indícios de irregularidades. O componente de mineração de dados foi implementado com o uso de técnicas estatísticas, redes neurais e lógica nebulosa.
|
2 |
Estratégia de otimização para a melhoria da interpretabilidade de redes bayesianas: aplicações em sistemas elétricos de potênciaROCHA, Cláudio Alex Jorge da 12 October 2009 (has links)
Submitted by Irvana Coutinho (irvana@ufpa.br) on 2011-03-30T16:23:46Z
No. of bitstreams: 2
ROCHA, Claúdio Alex Jorge daPPGEngenhara Elétrica tese.pdf: 1672175 bytes, checksum: 8c818fe77f66c2ba2126a0888e1abe85 (MD5)
license_rdf: 22876 bytes, checksum: 0a4e855daae7a181424315bc63e71991 (MD5) / Made available in DSpace on 2011-03-30T16:23:46Z (GMT). No. of bitstreams: 2
ROCHA, Claúdio Alex Jorge daPPGEngenhara Elétrica tese.pdf: 1672175 bytes, checksum: 8c818fe77f66c2ba2126a0888e1abe85 (MD5)
license_rdf: 22876 bytes, checksum: 0a4e855daae7a181424315bc63e71991 (MD5)
Previous issue date: 2009 / A investigação de métodos, técnicas e ferramentas que possam apoiar os processos decisórios em sistemas elétricos de potência, em seus vários setores, é um tema que tem despertado grande interesse. Esse suporte à decisão pode ser efetivado mediante o emprego de vários tipos de técnicas, com destaque para aquelas baseadas em inteligência computacional, face à grande aderência das mesmas a domínios com incerteza. Nesta tese, são utilizadas as redes Bayesianas para a extração de modelos de conhecimento a partir dos dados oriundos de sistemas elétricos de potência. Além disso, em virtude das demandas destes sistemas e de algumas limitações impostas às inferências em redes bayesianas, é desenvolvido um método original, utilizando algoritmos genéticos, capaz de estender o poder de compreensibilidade dos padrões descobertos por essas redes, por meio de um conjunto de procedimentos de inferência em redes bayesianas para a descoberta de cenários que propiciem a obtenção de um valor meta, considerando a incorporação do conhecimento a priori do especialista, a identificação das variáveis mais influentes para obtenção desses cenários e a busca de cenários ótimos que estabeleçam valores, definidos e ponderados pelo usuário/especialista, para mais de uma variável meta. / The study of methods, techniques and tools that can aid the decision processes in power systems, in its many sections, is a subject of great interest. This decision support can be accomplished through many different techniques, particularly those based on computational intelligence, given their applicability on domains with uncertainty. In this proposal, Bayesian networks are used for the extraction of knowledge models from the available data on power systems. Moreover, given the demands of these systems and some limitations imposed to the inferences in Bayesian networks, a method is proposed, using genetic algorithms, capable of extending the power of comprehensibility of the patterns discovered; it aims at finding the optimal scenario in order to attain a given target, considering the incorporation of a priori knowledge from domain specialists, identifying the most influent variables in the domain for the maximization of the target variable.
|
3 |
Mineração de dados aplicados ao sistema integrado de administração financeira do governo federal - SIAFI : detecção de anomalias na emissão de notas de empenho / Data mining applied to the Sistema Integrado de Administração Financeira do Governo Federal SIAFI: auditing the application of federal fundsEduardo Chaves Ferreira 18 June 2008 (has links)
Esta tese tem por objetivo propor um modelo para a detecção automática de indícios de irregularidades na execução da despesa pública, baseado em dados extraídos do Sistema Integrado de Administração Financeira do Governo Federal - SIAFI. O modelo proposto foi desenvolvido para atuar como ferramenta auxiliar ao trabalho de fiscalização da Administração Pública executado pelo Tribunal de Contas da União.
As análises realizadas pelo modelo baseiam-se em dois procedimentos complementares: sistema especialista e mineração de dados. A primeira alternativa permite criar um repositório de regras de conhecimento, extraídas da legislação e da experiência de analistas do TCU. A mineração de dados busca de forma automática informações não triviais, que não possam ser facilmente explicitadas através das regras de conhecimento.
A principal contribuição do trabalho é a sistematização do procedimento de detecção, detalhando os componentes do modelo e a interação entre eles. Com o objetivo de validar o modelo proposto, é feita a implementação do componente de mineração de dados, caracterizado no trabalho por um modelo matemático de comportamento quanto à execução da despesa e por algoritmos que, utilizando o modelo de comportamento, permitem detectar indícios de irregularidades. O componente de mineração de dados foi implementado com o uso de técnicas estatísticas, redes neurais e lógica nebulosa. / In this work we propose a model to automatically detect irregularities in application of federal funds that may cause losses to the public treasury. The model uses data from the
Sistema Integrado de Administração Financeira do Governo Federal - SIAFI. This model was created to help the Brazilian Court of Audit (TCU) in auditing the application of federal
funds.
The model has two modules, one is an expert system that will have the rules take form the legislation and from the experience of experts from TCU. The other module is a data
mining module, that is composed by Behavior model and the detection part that uses Statistics techniques, Neural Networks and Fuzzy Logic to detect possible irregularities.
|
Page generated in 0.0844 seconds