• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectroscopic and Thermal Analysis of Explosive and Related Compounds Via Gas Chromatography/Vacuum Ultraviolet Spectroscopy (GC/VUV)

Cruse, Courtney 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Analysis of explosives (intact and post-blast) is of interest to the forensic science community to qualitatively identify the explosive(s) in an improvised explosive device (IED). This requires high sensitivity, selectivity, and specificity. Forensic science laboratories typically utilize visual/microscopic exams, spectroscopic analysis (e.g., Fourier Transform Infrared Spectroscopy (FTIR)) and gas chromatography/mass spectrometry (GC/MS) for explosive analysis/identification. However, GC/MS has limitations for explosive analysis due to difficulty differentiating between structural isomers (e.g., 2,4-dinitrotoluene, 2,5-dinitrotoluene and 2,6- dinitrotoluene) and thermally labile compounds (e.g., ethylene glycol dinitrate (EGDN), nitroglycerine (NG) and pentaerythritol tetranitrate (PETN)) due to mass spectra with very similar fragmentation patterns. The development of a benchtop vacuum ultraviolet spectrometer coupled to a gas chromatography (GC/VUV) was developed in 2014 with a wavelength region of 120 nm to 430 nm. GC/VUV can overcome limitations in differentiating explosive compounds that produces similar mass spectra. This work encompasses analysis of explosive compounds via GC/VUV to establish the sensitivity, selectivity, and specificity for the potential application for forensic explosive analysis. Nitrate ester and nitramine explosive compounds thermally decompose in the VUV flow cell resulting in higher specificity due to fine structure in the VUV spectra. These fine structures originate as vibronic and Rydberg transitions in the small decomposition compounds (nitric oxide, carbon monoxide, formaldehyde, water, and oxygen) and were analyzed computationally. The thermal decomposition process was further investigated for the determination of decomposition temperatures for the nitrate ester and nitramine compounds which range between 244 oC and 277 oC. Nitrated compounds were extensively investigated to understand the absorption characteristics of the nitro functional group in the VUV region. The nitro absorption maximum appeared over a wide range (170 - 270 nm) with the wavelength and intensity being highly dependent upon the structure of the rest of the molecule. Finally, the GC/VUV system was optimized for post-blast debris analysis. Parameters optimized include the final temperature of a ramped multimode inlet program (200 oC), GC carrier gas flow rate (1.9 mL/min), and VUV make-up gas pressure (0.00 psi). The transfer line/flow cell temperature was determined not to be statistically significant.
2

The Detection and Identification of Explosives by Canines and Chemical Instrumentation

Reavis, Madison Dylan 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / With bombings in the United States on the rise for the first time since 2016, the detection and identification of explosives remains of pertinent interest to law enforcement agencies. This work presents two soon-to-be published research articles that focus on the detection and identification of explosives by both chemical instrumentation and canines. The first article, Quantitative Analysis of Smokeless Powder Particles in Post-Blast Debris via Gas Chromatography/Vacuum Ultraviolet Spectroscopy (GC/VUV), utilizes gas chromatography/vacuum ultraviolet spectroscopy (GC/VUV) to determine the difference in chemical composition of two smokeless powders in both pre- and post-blast conditions. The compounds of interest in this study were nitroglycerin, 2,4- dinitrotoluene, diphenylamine, ethyl centralite, and di-n-butyl phthalate. Concentration changes between pre- and post-blast smokeless powder particles were determined as well as microscopic differences between pre- and post-blast debris for both smokeless powders in all devices. To our knowledge, this is the first use of GC/VUV for the quantification of explosives. The second article, An Odor-Permeable Membrane Device for the Storage of Canine Training Aids, proposes the use of an odor-permeable membrane device (OPMD) as a standardized storage method for canine training aids. It is hypothesized that the OPMD would minimize cross-contamination between training aids, and that the OPMD could be used for canine training as well as storage. The goal of this research is to use flux and evaporation rate to quantify the explosive odor that escapes from the OPMD compared to unconfined explosives. Preliminary data suggests that there is an exponential relationship between relative boiling point and evaporation rate. It has been determined that compounds with higher boiling points have lower evaporation rates than compounds that have lower boiling points. The materials studied thus far are known odor compounds produced by explosive formulations. These include nitromethane, nitroethane, 1- nitropropane, r-limonene, and toluene.
3

SPECTROSCOPIC AND THERMAL ANALYSIS OF EXPLOSIVE AND RELATED COMPOUNDS VIA GAS CHROMATOGRAPHY/VACUUM ULTRAVIOLET SPECTROSCOPY (GC/VUV)

Courtney Cruse (11731682) 07 January 2022 (has links)
<p>Analysis of explosives (intact and post-blast) is of interest to the forensic science community to qualitatively identify the explosive(s) in an improvised explosive device (IED). This requires high sensitivity, selectivity, and specificity. Forensic science laboratories typically utilize visual/microscopic exams, spectroscopic analysis (e.g., Fourier Transform Infrared Spectroscopy (FTIR)) and gas chromatography/mass spectrometry (GC/MS) for explosive analysis/identification. However, GC/MS has limitations for explosive analysis due to difficulty differentiating between structural isomers (e.g., 2,4-dinitrotoluene, 2,5-dinitrotoluene and 2,6-dinitrotoluene) and thermally labile compounds (e.g., ethylene glycol dinitrate (EGDN), nitroglycerine (NG) and pentaerythritol tetranitrate (PETN)) due to mass spectra with very similar fragmentation patterns. </p><p>The development of a benchtop vacuum ultraviolet spectrometer coupled to a gas chromatography (GC/VUV) was developed in 2014 with a wavelength region of 120 nm to 430 nm. GC/VUV can overcome limitations in differentiating explosive compounds that produces similar mass spectra. This work encompasses analysis of explosive compounds via GC/VUV to establish the sensitivity, selectivity, and specificity for the potential application for forensic explosive analysis. Nitrate ester and nitramine explosive compounds thermally decompose in the VUV flow cell resulting in higher specificity due to fine structure in the VUV spectra. These fine structures originate as vibronic and Rydberg transitions in the small decomposition compounds (nitric oxide, carbon monoxide, formaldehyde, water, and oxygen) and were analyzed computationally. The thermal decomposition process was further investigated for the determination of decomposition temperatures for the nitrate ester and nitramine compounds which range between 244 ºC and 277 ºC. Nitrated compounds were extensively investigated to understand the absorption characteristics of the nitro functional group in the VUV region. The nitro absorption maximum appeared over a wide range (170 - 270 nm) with the wavelength and intensity being highly dependent upon the structure of the rest of the molecule. Finally, the GC/VUV system was optimized for post-blast debris analysis. Parameters optimized include the final temperature of a ramped multimode inlet program (200 ºC), GC carrier gas flow rate (1.9 mL/min), and VUV make-up gas pressure (0.00 psi). The transfer line/flow cell temperature was determined not to be statistically significant.</p><br>
4

Solid-Phase Microextraction of Volatile Organic Compounds for Analytical and Forensic Applications

Kymeri E Davis (6989576) 03 January 2024 (has links)
<p dir="ltr">Gas chromatography-mass spectrometry (GC-MS) is a frequently used technique in forensic chemistry for the identification of controlled substances and explosives. GC-MS can be coupled with solid-phase microextraction (SPME), in which a fiber with a sorptive coating is placed into the headspace above a sample or directly immersed in a liquid sample. Analytes are adsorbed onto the fiber which is then placed inside the heated GC inlet for desorption.</p><p dir="ltr">Illicit drugs are often found in the form of impure solids, mixed with other drugs, adulterants, and diluents. A simple method for the quick identification of drugs including methamphetamine, cocaine, heroin, fentanyl, and pharmaceutical tablets was developed. Headspace SPME methods were utilized with an elevated extraction temperature for the detection of various drugs in powder and tablet form. An extraction temperature of 120°C was used to encourage analytes into the headspace of the vial. A sample of the solid drug was placed in a headspace vial with no prior sample preparation or clean-up. This vial was then heated inside of an agitator where the sample was extracted. It was found that drugs in solid and tablet form can be detected using this high temperature headspace SPME method at the temperature of 120°C with no prior sample preparation. This method is simple, efficient, and cost effective for the detection of legal and illicit drugs in solid form.</p><p dir="ltr">Headspace SPME may also be used for the analysis of explosive materials. Canines trained at detecting hidden explosives should be trained using real explosive materials that have minimal contamination by other explosive odors to ensure accurate identification of potential threats. Therefore, the potential for cross-contamination between training aids is of importance. There are various storage methods in use by canine handlers such as plastic and cloth bags, but these can lead to cross-contamination between training aids during storage. Alternatively, odor-permeable membrane devices (OPMDs) may store training aides and be used as a delivery device. A membrane in the OPMD allows for volatile compounds from the training aids to be released during training while helping to prevent contaminants from entering the device. OPMDs were used in addition to traditional storage containers to monitor the contamination and degradation of 14 explosives used as canine training aids. Samples included explosives that contain highly volatile compounds like dynamite and explosives with less volatile compounds like RDX. Explosives were stored individually using traditional storage bags or inside of an OPMD at two locations, IUPUI and an Indianapolis Metropolitan Police Department. The police department actively used the training aids during canine trainings. Samples from each storage type at both locations were collected at 0, 3, 6, and 9 months and analyzed using Fourier transform infrared (FTIR) spectroscopy and GC-MS with SPME. FTIR analyses showed no signs of degradation of the training aids from any timepoint or location. GC-MS identified cross-contamination from ethylene glycol dinitrate and/or 2,3-dimethyl-2,3-dinitrobutane across almost all samples regardless of storage condition. The contamination was found to be higher among training aids that were stored in traditional ways and were in active use by canine teams. Additionally, Time 0 had the highest level of contamination, indicating that explosive training aids are received from the vendors with initial cross-contamination.</p><p dir="ltr">To test the initial cross-contamination levels of training aids, 11 explosive materials were ordered from three different vendors. A 1-gram sample of each was collected and analyzed using SPME with GC-MS. In several cases, explosive materials that are commercially available already exhibit elevated levels of contamination. This indicates that training aids must be acquiring contamination during manufacturing and/or storage at the vendor facility. The cross-contamination of explosive canine training aids stored in OPMDs was further evaluated and compared to traditional storage methods. This was done by storing various combinations of storage containers such as cloth bags, velcro bags, and OPMDs along with explosives and using activated charcoal strips to collect the volatile compounds such as 2,3-dimethyl-2,3-dinitrobutane and ethylene glycol dinitrate. Only one type of storage container, a velcro bag, showed evidence of contamination, indicating that OPMDs may not further prevent cross-contamination of explosive training aids.</p>
5

The Detection and Identification of Explosives by Canines and Chemical Instrumentation

Madison D Reavis (12445989) 12 July 2022 (has links)
<p>  </p> <p>With bombings in the United States on the rise for the first time since 2016, the detection and identification of explosives remains of pertinent interest to law enforcement agencies. This work presents two soon-to-be published research articles that focus on the detection and identification of explosives by both chemical instrumentation and canines. The first article, <em>Quantitative Analysis of Smokeless Powder Particles in Post-Blast Debris via Gas Chromatography/Vacuum Ultraviolet Spectroscopy (GC/VUV)</em>, utilizes gas chromatography/vacuum ultraviolet spectroscopy (GC/VUV) to determine the difference in chemical composition of two smokeless powders in both pre- and post-blast conditions. The compounds of interest in this study were nitroglycerin, 2,4-dinitrotoluene, diphenylamine, ethyl centralite, and di-n-butyl phthalate. Concentration changes between pre- and post-blast smokeless powder particles were determined as well as microscopic differences between pre- and post-blast debris for both smokeless powders in all devices. To our knowledge, this is the first use of GC/VUV for the quantification of explosives. The second article, <em>An Odor-Permeable Membrane Device for the Storage of Canine Training Aids</em>, proposes the use of an odor-permeable membrane device (OPMD) as a standardized storage method for canine training aids. It is hypothesized that the OPMD would minimize cross-contamination between training aids, and that the OPMD could be used for canine training as well as storage. The goal of this research is to use flux and evaporation rate to quantify the explosive odor that escapes from the OPMD compared to unconfined explosives. Preliminary data suggests that there is an exponential relationship between relative boiling point and evaporation rate. It has been determined that compounds with higher boiling points have lower evaporation rates than compounds that have lower boiling points. The materials studied thus far are known odor compounds produced by explosive formulations. These include nitromethane, nitroethane, 1-nitropropane, r-limonene, and toluene. </p>

Page generated in 0.06 seconds