• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 10
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MCNP simulations for standoff bomb detection using neutron interrogation

Johll, Mark January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / William L. Dunn / This report investigates the feasibility of a standoff interrogation method to identify nitrogen-rich explosive samples shielded by other materials (“clutter”) using neutron beams from Cf-252 and deuterium-tritium (D-T) generator sources. Neutrons from the beams interact with materials in the target to produce inelastic-scatter gamma rays, and, after slowing down to thermal energies, prompt-capture gamma rays. By detection of these gamma rays, a response vector is formed that is used to calculate a figure-of-merit, whose value is dependent upon the contents of the target. Various target configurations, which include an inert-material shield and a sample that may or may not be explosive, were simulated using the MCNP5 code. Both shielding and collimation of 14.1-MeV neutron beams were simulated to produce effective neutron beams for target interrogation purposes and to minimize dose levels. Templates corresponding to particular target scenarios were generated, and their effectiveness at nitrogen-rich explosive identification was explored. Furthermore, methods were proposed yielding more effective templates including grouping target responses by density and composition. The results indicate that neutron-based interrogation has potential to detect shielded nitrogen-rich explosives. The research found that using a tiered filter approach, in which a sample must satisfy several template requirements, achieved the best results for identifying the explosive cyclonite (RDX). A study in which a 14.1-MeV neutron beam irradiated a target containing a shielded sample, which could either be explosive (RDX) or inert, yielded no false negatives and only 2 false positives over a large parameter space of clutter-sample combination.
2

Ion Mobility Spectrometry : Optimization of Parameters in Collision Cross Sections and Trace Detection of Explosives

Wu, Tianyang 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Ion mobility spectrometry is a powerful technique for the study related to molecule. The work of tow major applications are introduced in this paper. The first application is the optimization of parameters in CCS. The accurate calculation of the collision cross section for multiple molecules is a long-time interested topic in the research for substances detection in micro scale. No reliable analytical approach to calculate the collision cross section has been established to date. Different approaches rely on different mechanism will provide different results in significant extent. This work introduce a method for the determination of parameters in the Lennard Jones potential. Experimental data combined with numerical computation was the fundamental strategy during the optimization of the parameters. In the experiment, electrospray is used as the ion source of IMS while a nebulizer was utilized to electrify the aromatic compounds. New parameters show no less accuracy and equal efficiency while can explain the physical meaning of the collision more clearly. The second application is the trace detection of explosives with very low concentration. The detection of explosives is an important topic in security, while the detection will be difficult due to the low vapor pressure of explosives. In this work, two types of devices are designed for the trace detection of explosives at an extremely low concentration. TNT is selected as the explosives in the experiment. The experiment succeed to reach a sensitivity of 1 part per quintillion, and even find out a linear relationship between the logarithm of TNT concentration and TNT vapor pressure.
3

Improving Object Classification in X-ray Luggage Inspection

Shi, Xinhua 27 July 2000 (has links)
X-ray detection methods have increasingly been used as an effective means for the automatic detection of explosives. While a number of devices are now commercially available, most of these technologies are not yet mature. The purpose of this research has been to investigate methods for using x-ray dual-energy transmission and scatter imaging technologies more effectively. Followed by an introduction and brief overview of x-ray detection technologies, a model for a prototype x-ray scanning system, which was built at Virginia Tech, is given. This model has primarily been used for the purpose of system analysis, design and simulations. Then, an algorithm is developed to correct the non-uniformity of transmission detectors in the prototype scanning system. The x-ray source output energy in the prototype scanning system is not monochromatic, resulting in two problems: spectrum overlap and output signal unbalance between high and low energy levels, which will degrade the performance of dual-energy x-ray sensing. A copper filter has been introduced and a numerical optimization method to remove thickness effect of objects has been developed to improve the system performance. The back scattering and forward scattering signals are functions of solid angles between the object and detectors. A given object may be randomly placed anywhere on the conveyor belt, resulting in a variation in the detected signals. Both an adaptive modeling technique and least squares method are used to decrease this distance effect. Finally, discriminate function methods have been studied experimentally, and classification rules have been obtained to separate explosives from other types of materials. In some laboratory tests on various scenarios by inserting six explosive simulants, we observed improvements in classification accuracy from 60% to 80%, depending on the complexity of luggage bags. / Ph. D.
4

An MCNP study of fast neutron interrogation for standoff detection of improvised explosive devices

Heider, Samuel A. January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / William L. Dunn / The signature-based radiation-scanning (SBRS) technique relies on radiation detector responses, called “signatures,” and compares them to “templates”, to differentiate targets containing nitrogen-rich explosives from those that do not. This investigation utilizes nine signatures due to inelastic-scatter and prompt-capture gamma rays from hydrogen, carbon, nitrogen, and oxygen (HCNO) as well as two neutron signatures, produced when a target is interrogated with a 14.1 MeV neutron source beam. One hundred and forty three simulated experiments were conducted using MCNP5. Signatures of 42 targets containing explosive samples (21 of RDX and 21 of Urea Nitrate), and 21 containing inert samples were compared with the signatures of 80 artificial templates through figure-of-merit analysis. A density filter, comparing targets with templates of similar average density was investigated. Both high and low-density explosives (RDX-1.8 g cm-3 and Urea Nitrate-0.69 g cm-3) were shown to be differentiated from inert materials through use of neutron and gamma-ray signature templates with sensitivity of 90.5% and specificity of 76.2%. Density Groups were identified, in which neutron signature templates, gamma-ray signature templates or the combination of neutron and gamma-ray signature templates were capable of improving inert-explosive differentiation. figure-of -merit analysis, employing the best Density Group specific templates, differentiated explosive from inert targets with 90.5% sensitivity and specificity of over 85%.
5

Simulation of X-ray imaging systems for luggage inspection

Xie, Wei 23 December 2009 (has links)
This thesis describes XL, an x-ray imaging simulator for luggage inspection. This software system runs on a workstation and models x-ray sources, x-ray detectors and objects between them. A simple graphical interface permits the user to specify simulation parameters and inputs. XL then uses Monte Carlo methods to simulate x-ray interaction with matter, including the photoelectric effect, coherent scattering, and incoherent scattering. Finally, XL can produce x-ray images which agree closely with experimental data obtained from a commercial luggage scanner. The simulator will be a valuable tool in the development of future x-ray scanners, particularly those designed to detect explosives in luggage. / Master of Science
6

Side-attack explosive hazard detection in voxel-space radar using signal processing and convolutional neural networks

Brockner, Blake 09 August 2019 (has links)
The development of a computer vision algorithm for use with 3D voxel space radar imagery is observed in this thesis. The goal is to detect explosive hazards present in 3D synthetic aperture radar (SAR) image data. The algorithm consists of three primary stages; a precreener to find areas of interest, clustering for labeling distinct areas, and a classifier. The performance between multiple prescreener methods are compared when using a heuristic classifier. Finally, a convolutional neural network (CNN) is used as a classifier stage and a comparison between a deep network, a shallow network, and human experts is conducted.
7

Nanoplasmonic efficacy of gold triangular nanoprisms in measurement science: applications ranging from biomedical to forensic sciences

Liyanage, Thakshila 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Noble metal nanostructures display collective oscillation of the surface conduction electrons upon light irradiation as a form of localized surface plasmon resonance (LSPR) properties. Size, shape, and refractive index of the surrounding environment are the key features that control the LSPR properties. Surface passivating ligands on to the nanostructure can modify the charge density of nanostructures. Further, allow resonant wavelengths to match that of the incident light. This unique phenomenon called the “plasmoelectric effect.” According to the Drude model, red and blue shifts of LSPR peak of nanostructures are observed in the event of reducing and increasing charge density, respectively. However, herein, we report unusual LSPR properties of gold triangular nanoprisms (Au TNPs) upon functionalization with para-substituted thiophenols (X-Ph-SH, X = -NH2, -OCH3, -CH3, -H, -Cl, -CF3, and -NO2). Accordingly, we hypothesized that an appropriate energy level alignment between the Au Fermi energy and the HOMO or LUMO of ligands allows the delocalization of surface plasmon excitation at the hybrid inorganic-organic interface. Thus, provides a thermodynamically driven plasmoelectric effect. We further validated our hypothesis by calculating the HOMO and LUMO levels and work function changes of Au TNPs upon functionalization with para-substituted thiol. This reported unique finding then utilized to design ultrasensitive plasmonic substrate for biosensing of cancer microRNA in bladder cancer and cardiovascular diseases. In the discovery of early bladder cancer diagnosis platform, for the first time, we have been utilized to analyze the tumor suppressor microRNA for a more accurate diagnosis of BC. Additionally, we have been advancing our sensing platform to mitigate the false positive and negative responses of the sensing platform using surface-enhanced fluorescence technique. This noninvasive, highly sensitive, highly specific, also does not have false positives techniques that provide the strong key to detect cancer at a very early stage, hence increase the cancer survival rate. Moreover, the electromagnetic field enhancement of Surface-Enhanced Raman Scattering (SERS) and other related surface-enhanced spectroscopic processes resulted from the LSPR property. This dissertation describes the design and development of entirely new SERS nanosensors using a flexible SERS substrate based on the unique LSPR property of Au TNPs. The developed sensor shows an excellent SERS activity (enhancement factor = ~6.0 x 106) and limit of detection (as low as 56 parts-per-quadrillions) with high selectivity by chemometric analyses among three commonly used explosives (TNT, RDX, and PETN). Further, we achieved the programmable self-assembly of Au TNPs using molecular tailoring to form a 3D supper lattice array based on the substrate effect. Here we achieved the highest reported sensitivity for potent drug analysis, including opioids and synthetic cannabinoids from human plasma obtained from the emergency room. This exquisite sensitivity is mainly due to the two reasons, including molecular resonance of the adsorbate molecules and the plasmonic coupling among the nanoparticles. Altogether we are highly optimistic that our research will not only increase the patient survival rate through early detection of cancer but also help to battle the “war against drugs” that together are expected to enhance the quality of human life.
8

NANOPLASMONIC EFFICACY OF GOLD TRIANGULAR NANOPRISMS IN MEASUREMENT SCIENCE: APPLICATIONS RANGING FROM BIOMEDICAL TO FORENSIC SCIENCES

Thakshila Liyanage (8098115) 11 December 2019 (has links)
<p>Noble metal nanostructures display collective oscillation of the surface conduction electrons upon light irradiation as a form of localized surface plasmon resonance (LSPR) properties. Size, shape and the refractive index of surrounding environment are the key features that controls the LSPR properties. Surface passivating ligands have the ability to modify the charge density of nanostructures to allow resonant wavelength to match that of the incident light, a phenomenon called “plasmoelectric effect,”. According to the drude model Red and blue shifts of LSPR peak of nanostructures are observed in the event of reducing and increasing charge density, respectively. However, herein we report unusual LSPR properties of gold triangular nanoprisms (Au TNPs) upon functionalization with para-substituted thiophenols (X-Ph-SH, X = -NH<sub>2</sub>, -OCH<sub>3</sub>, -CH<sub>3</sub>, -H, -Cl, -CF<sub>3</sub>, and -NO<sub>2</sub>). Accordingly, we hypothesized that an appropriate energy level alignment between the Au Fermi energy and the HOMO or LUMO of ligands allows delocalization of surface plasmon excitation at the hybrid inorganic-organic interface, and thus provides a thermodynamically driven plasmoelectric effect. We further validated our hypothesis by calculating the HOMO and LUMO levels and also work function changes of Au TNPs upon functionalization with para substituted thiol. We further utilized our unique finding to design ultrasensitive plasmonic substrate for biosensing of cancer microRNA in bladder cancer and owe to unpresidential sensitivity of the developed Au TNPs based LSPR sensor, for the first time we have been utilized to analysis the tumor suppressor microRNA for more accurate diagnosis of BC. Additionally, we have been advancing our sensing platform to mitigate the false positive and negative responses of the sensing platform using surface enhanced fluorescence technique. This noninvasive, highly sensitive, highly specific, also does not have false positives technique provide strong key to detect cancer at very early stage, hence increase the cancer survival rate. Moreover, the electromagnetic field enhancement of Surface-Enhanced Raman Scattering (SERS) and other related surface-enhanced spectroscopic processes resulted from the LSPR property. This dissertation describes the design and development of entirely new SERS nanosensors using flexible SERS substrate based on unique LSPR property of Au TNPs and developed sensors shows excellent SERS activity (enhancement factor = ~6.0 x 106) and limit of detection (as low as 56 parts-per-quadrillions) with high selectivity by chemometric analyses among three commonly used explosives (TNT, RDX, and PETN). Further we achieved the programable self-assembly of Au TNPs using molecular tailoring to form a 3D supper lattice array based on the substrate effect. Here we achieved the highest reported sensitivity for potent drug analysis, including opioids and synthetic cannabinoids from human plasma obtained from the emergency room. This exquisite sensitivity is mainly due to the two reasons, including molecular resonance of the adsorbate molecules and the plasmonic coupling among the nanoparticles. Altogether we are highly optimistic that our research will not only increase the patient survival rate through early detection of cancer but also help to battle the “war against drugs” that together is expected to enhance the quality of human life. </p> <p> </p>
9

Functional hybrid materials for the optical recognition of nitroaromatic explosives involving supramolecular interactions

Salinas Soler, Yolanda 02 September 2013 (has links)
La presente tesis doctoral titulada ¿Materiales funcionales híbridos para el reconocimiento óptico de explosivos nitroaromáticos mediante interacciones supramoleculares¿ se basa en la combinación de principios de Química Supramolecular y de Ciencia de los Materiales para el diseño y desarrollo de nuevos materiales híbridos orgánico-inorgánicos funcionales capaces de detectar explosivos nitroaromáticos en disolución. En primer lugar se realizó una búsqueda bibliográfica exhaustiva de todos los sensores ópticos (cromogénicos y fluorogénicos) descritos en la bibliografía y que abarca el periodo desde 1947 hasta 2011. Los resultados de la búsqueda están reflejados en el capítulo 2 de esta tesis. El primer material híbrido preparado está basado en la aplicación de la aproximación de los canales iónicos y, para ello, emplea nanopartículas de sílice funcionalizadas con unidades reactivas y unidades coordinantes (ver capítulo 3). Este soporte inorgánico se funcionaliza con tioles (unidad reactiva) y una poliamina lineal (unidad coordinante) y se estudia el transporte de una escuaridina (colorante) a la superficie de la nanopartícula en presencia de diferentes explosivos. En ausencia de explosivos, la escuaridina (color azul y fluorescencia intensa) es capaz de reaccionar con los tioles anclados en la superficie decolorando la disolución. En presencia de explosivos nitroaromáticos se produce una inhibición de la reacción escuaridinatiol y la suspensión permanece azul. Esta inhibición es debida a la formación de complejos de transferencia de carga entre las poliaminas y los explosivos nitroaromáticos. En la segunda parte de esta tesis doctoral se han preparado materiales híbridos con cavidades biomiméticas basados en el empleo de MCM-41 como soporte inorgánico mesoporoso (ver capítulo 4). Para ello se ha procedido al anclaje de tres fluoróforos (pireno, dansilo y fluoresceína) en el interior de los poros del soporte inorgánico y, posteriormente, se ha hidrofobado el interior de material mediante la reacción de los silanoles superficiales con 1,1,1,3,3,3-hexametildisilazano. Mediante este procedimiento se consiguen cavidades hidrófobas que tienen en su interior los fluoróforos. Estos materiales son fluorescentes cuando se suspenden en acetonitrilo mientras que cuando se añaden explosivos nitroaromáticos a estas suspensiones se observa una desactivación de la emisión muy marcada. Esta desactivación de la emisión es debida a la inclusión de los explosivos nitroaromáticos en la cavidad biomimética y a la interacción de estas moléculas (mediante interacciones de ¿- stacking) con el fluoróforo. Una característica importante de estos materiales híbridos sensores es que pueden ser reutilizados después de la extracción del explosivo de las cavidades hidrofóbicas. En la última parte de esta tesis doctoral se han desarrollado materiales híbridos orgánicoinorgánicos funcionalizados con ¿puertas moleculares¿ que han sido empleados también para detectar explosivos nitroaromáticos (ver capítulo 5). Para la preparación de estos materiales también se ha empleado MCM-41 como soporte inorgánico. En primer lugar, los poros del soporte inorgánico se cargan con un colorante/fluoróforo seleccionado. En una segunda etapa, la superficie externa del material cargado se ha funcionalizado con ciertas moléculas con carácter electrón dador (pireno y ciertos derivados del tetratiafulvaleno). Estas moléculas ricas en electrones forman una monocapa muy densa (debida a las interacciones dipolo-dipolo entre estas especies) alrededor de los poros que inhibe la liberación del colorante. En presencia de explosivos nitroaromáticos se produce la ruptura de la monocapa, debido a interacciones de ¿-stacking con las moléculas ricas en electrones, con la consecuencia de una liberación del colorante atrapado en el interior de los poros observándose una respuesta cromo-fluorogénica / Salinas Soler, Y. (2013). Functional hybrid materials for the optical recognition of nitroaromatic explosives involving supramolecular interactions [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31663 / TESIS / Premios Extraordinarios de tesis doctorales
10

Vinylanthracene and Triphenylamine Based Luminescent Molecular Systems : From Aggregation-Induced Emission to Explosive Detection

Chowdhury, Aniket January 2016 (has links) (PDF)
In the last few years, considerable efforts have been given to develop sensitive and effective sensors for explosive materials and to generate systems which exhibit high luminescence in both solution and solid-state. The increasing number of terrorist activities around the world have prompted scientists to design effective ways to detect and disarm even the trace amount of explosives. The nitroaromatics (NACs) are the common constituents of most of the explosives due to high explosive velocity and ease of availability. The NACs were extensively used as the main constituents in landmines until World War II. Apart from their explosive behavior, the NACs are well-known environmental pollutants. The industrial waste and the leakages from unexploded landmines are the major contributors towards the soil and ground water contamination. Presently for effective detection of trace amount of explosives, skilled canines and metal based detectors are commonly used. The canines are trained for a specific type of explosives which limit their ability to detect different types of substrates. The chemical sensors that work on the principle of colorimetric and/or fluorimetric detection techniques have emerged as suitable alternative due to cheap production cost, portability and sensitivity. Different types of materials including conjugated polymers, metal-organic frameworks (MOFs), and quantum-dots have been reported as efficient chemosensors for NACs. However, poor solubility in the common organic solvents, low solid-state fluorescence, very high molecular weight and lack of signal amplification have restricted the application of these material for in-field testing. Renewed interests have been invested in small molecule based systems; and metal-organic discrete molecular architectures due to precise control over their photophysical properties and the supramolecular interaction among neighboring molecules that facilitates energy migration among the molecular backbone. On the other hand, recently post-synthetic modification of different molecular systems including MOFs and polymers has emerged as a potential technique to incorporate desired functional groups into the system and to tune their properties with the retention of basic structures. Reports on the post-synthetic modification of discrete metal-organic architectures are rare due to the delicate nature of the metal-organic bonds that ruptures on mild environmental changes. Therefore, post-synthetic functionalization of discrete molecular systems using mild reaction conditions will open up a myriad of possibilities to generate new systems with desired characteristics. Chapter 1 of the thesis will briefly discuss the history of different explosive materials including different detection methodologies that are widely used. It will also include a brief discussion on different small molecular systems with high solid-state luminescence. In Chapter 2, design and synthesis of triphenylamine-based two Platinum(Pt)(II) molecules functionalized with carboxylic acid and ester groups including their organic analogues have been discussed. The triphenylamine core was chosen due its unique non-planarity and luminescence. On the other hand, Pt(II) center was incorporated to increase intermolecular spacing in solid-state that can induce high luminescence. Scheme 1. Schematic representation of fluorescence quenching using small molecules. All the four molecules were found to be highly sensitive towards NACs including picric acid and dinitrophenol. Although the molecules exhibited similar sensitivity in solution, the carboxylic acid analogues demonstrated superior sensitivity in solid-state. Careful observation of the crystal structures of the systems revealed the acid analogues were oriented in a 2-D grid-like pattern that facilitated energy migration among neighboring molecules (Scheme 1.). Chapter 3 describes design, synthesis, and NACs sensing behavior of anthracene-based four purely organic small molecules. The molecules exhibited high selectivity towards picric acid only. All the molecules were found to be highly emissive in both solution and solid-state due to the vinylanthracene backbone (Scheme 2.). Scheme 2. Schematic representation of fluorescence quenching and solid-state sensing behavior. Chapter 4 discusses the strategy to develop mechano-fluorochromic and AIE active triphenylamine-based Pt(II) complex and its organic analogue. The twisted triphenylamine backbone restricted molecular close packing in solid-state; and weak C-H-- interactions were utilized to hinder the motion of the phenyl rings. As a result, the molecules were highly emissive in solid-state. Grinding disrupted the intermolecular interactions and thus mechano-fluorochromic behavior was observed. Due to twisted backbone, the molecules were also found to be AIE active. Both the systems containing terminal aldehyde groups were finally utilized for selective detection of biomolecule cysteine (Scheme 3.). Scheme 3. Mechano-fluorochromic and AIE behavior of the triphenylamine based Pt(II) complex. In Chapter 5 vinylanthracene-based linear donor was used in combination with carbazole-based 90° and triphenylamine-based 120° Pt(II) acceptors to generate (4+4) and (6+6) molecular squares and hexagons, respectively. The vinylanthracene backbone imparts high solution and solid-state luminescence to the system as well as made them AIE active. The molecules were further investigated for the solution and solid-state sensing for NACs and found to be effective for trinitrotoluene (TNT) and dinitrotoluene (DNT) (Scheme 4.). Scheme 4. Schematic representation of AIE active molecular square and its NACs sensing. Chapter 6 describes the formation of Pd3 self-assembled molecular trinuclear barrels containing triphenylamine imidazole donors and Pd(II) acceptors. Using Knoevenagel condensation the aldehyde group present in the barrel was post-synthetically functionalized with Meldrum’s acid. From spectroscopic characterization, it was proved that the structural integrity remained intact after the post-modification treatment (Scheme 6.). Surprisingly, pre-synthetic modification of the donor alone with Meldrum’s acid followed by self-assembly treatment with the Pd(II) ion did not yield trigonal barrel 6.8. Scheme 6. Post-synthetic functionalization of trinuclear barrels using Knoevenagel condensation.(For colour pictures pl see the abstract pdf file)

Page generated in 0.4817 seconds