• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low threshold organic semiconductor lasers and their application as explosive sensors

Wang, Yue January 2012 (has links)
This thesis presents studies of organic semiconductor lasers, including their operation when pumped by a light-emitting diode (LED), and their application as explosive sensors. The photophysics and amplified spontaneous emission (ASE) of star-shaped oligofluorene truxene molecules were investigated. These materials exhibit high gain and low optical loss in thin-film waveguides. Low ASE thresholds were achieved with the truxene T3 and T4. Second-order distributed feedback (DFB) lasers were fabricated, with pump threshold intensities below 0.5 kW/cm² and broad tunability of the emission. DFB lasers were demonstrated with a novel polymer BBEHP-PPV, pumped by a pulsed commercial InGaN LED. The laser emission occurred at 533 nm for peak drive current above 15 A. The output beams and pulse-dynamics of the lasers were investigated for the first time, along with a 'double-threshold' phenomenon that was observed in this long-pulse pumping regime. BBEHP-PPV lasers based on various types of diffractive resonators were also fabricated by UV nanoimprint-lithography (NIL). By optimising the resonator design and the fabrication, and the pump-beam geometry, polymer laser thresholds of ~60 W/cm², the lowest recorded for NIL lasers, were demonstrated, enabling them to be pumped by pulsed commercial LEDs and custom micro-LED arrays. One promising application of organic lasers is in explosive sensing. A polymer of intrinsic microporosity (PIM-1) was used to detect nitroaromatic vapours. Rapid detection of dinitrobenzene (DNB) of low vapour pressure was achieved by monitoring the photoluminescence and laser emission during exposure. In addition, a CMOS time-resolved fluorescence lifetime microsystem with a commercial green-emitting copolymer was used as a novel, portable sensor to detect DNB vapour. An InGaN LED pumped BBEHP-PPV laser was also used as a miniature sensor to detect 10 ppb of DNB. These highly sensitive hybrid sensors could be used in humanitarian demining, complementing existing technologies leading to improvement in the detection of hazardous objects.
2

Thermal Bimorph Micro-Cantilever Based Nano-Calorimeter for Sensing of Energetic Materials

Kang, Seokwon 2012 May 1900 (has links)
The objective of this study is to develop a robust portable nano-calorimeter sensor for detection of energetic materials, primarily explosives, combustible materials and propellants. A micro-cantilever sensor array is actuated thermally using bi-morph structure consisting of gold (Au: 400 nm) and silicon nitride (Si3N4: 600 nm) thin film layers of sub-micron thickness. An array of micro-heaters is integrated with the microcantilevers at their base. On electrically activating the micro-heaters at different actuation currents the microcantilevers undergo thermo-mechanical deformation, due to differential coefficient of thermal expansion. This deformation is tracked by monitoring the reflected ray from a laser illuminating the individual microcantilevers (i.e., using the optical lever principle). In the presence of explosive vapors, the change in bending response of microcantilever is affected by the induced thermal stresses arising from temperature changes due to adsorption and combustion reactions (catalyzed by the gold surface). A parametric study was performed for investigating the optimum values by varying the thickness and length in parallel with the heater power since the sensor sensitivity is enhanced by the optimum geometry as well as operating conditions for the sensor (e.g., temperature distribution within the microcantilever, power supply, concentration of the analyte, etc.). Also, for the geometry present in this study the nano-coatings of high thermal conductivity materials (e.g., Carbon Nanotubes: CNTs) over the microcantilever surface enables maximizing the thermally induced stress, which results in the enhancement of sensor sensitivity. For this purpose, CNTs are synthesized by post-growth method over the metal (e.g., Palladium Chloride: PdCl2) catalyst arrays pre-deposited by Dip-Pen Nanolithography (DPN) technique. The threshold current for differential actuation of the microcantilevers is correlated with the catalytic activity of a particular explosive (combustible vapor) over the metal (Au) catalysts and the corresponding vapor pressure. Numerical modeling is also explored to study the variation of temperature, species concentration and deflection of individual microcantilevers as a function of actuation current. Joule-heating in the resistive heating elements was coupled with the gaseous combustion at the heated surface to obtain the temperature profile and therefore the deflection of a microcantilever by calculating the thermally induced stress and strain relationship. The sensitivity of the threshold current of the sensor that is used for the specific detection and identification of individual explosives samples - is predicted to depend on the chemical kinetics and the vapor pressure. The simulation results showed similar trends with the experimental results for monitoring the bending response of the microcantilever sensors to explosive vapors (e.g., Acetone and 2-Propanol) as a function of the actuation current.

Page generated in 0.3967 seconds