Spelling suggestions: "subject:"exponential map"" "subject:"xponential map""
1 |
r-critical points and Taylor expansion of the exponential map, for smooth immersions in Rk+nGarcía Monera, María 29 May 2015 (has links)
[EN] Classically, the study of the contact with hyperplanes and hyperspheres has been realized by using the family of height and distance squared functions. On the first part of the thesis, we analyze the Taylor expansion of the exponential map up to order three of a submanifold $M$
immersed in $\r n.$ Our main goal is to show its usefulness for the description of special contacts of the submanifolds with geometrical models.
As we analyze the contacts of high order, the complexity of the calculations increases. In this work, through the Taylor expansion of the exponential map, we characterize the geometry of order
higher than $3$ in terms of invariants of the immersion, so that the effective computations in specific cases become more affordable. It allows also to get new geometric insights.
On the second part of the thesis, we introduce the concept of critical point of a smooth map between submanifolds. If we consider a differentiable $k$-dimensional manifold $M$
immersed in $\r{k+n},$ we know that its focal set can also be
interpreted as the image of the critical points of the {\it normal
map} $\nu(m,u): NM\to \r{k+n}$ defined by $\nu(m,u)=\pi_N(m,u)+
u,$ for $m\in M$ and $u\in N_mM,$ where $\pi_N:NM\to M$ denotes the normal
bundle.
In the same way, the parabolic set of a differential submanifold is given through the analysis of the singularities of the height functions over the submanifold. If we consider a differentiable
$k$-dimensional manifold $M$ immersed in $\r{k+n},$ we know that its parabolic set can also be interpreted as the image of the critical points of the {\it generalized Gauss map} $\psi(m,u):
NM\to \r{k+n}$ defined by $\psi(m,u)= u,$ for $u\in N_mM.$
Finally, we characterize the asymptotic directions as the tangent set of a $k$-dimensional manifold $M$ immersed in $\r{k+n}$ throughout the study of the singularities of the tangent map $\Omega(m,y): TM\to \r{k+n}$ defined by $\Omega(m,y)=\pi(m,y)+y,$
for $y\in T_mM,$ where $\pi:TM\to M$ denotes the tangent bundle.
We describe first the focal set and its geometrical relation to the Veronese of curvature for
$k$-dimensional immersions in $\r{k+n}.$ Then we define the $r$-critical points of a differential map $f:H \to K$ between two differential manifolds and characterize the $2$ and $3$-critical points of the normal map and generalized Gauss map. The number of these
critical points at $m\in M$ may depend on the degeneration of the curvature ellipse and we calculate those numbers in the particular
case that $M$ is an immersed surface in $\r{4}$ for the normal map and $\r{5}$ for the generalized Gauss map. / [ES] En general, el estudio del contacto con hiperplanos e hiperesferas se ha llevado a cabo usando la familia de funciones altura y la función distancia al cuadrado. En la primera parte de la tesis analizamos el desarrollo de Taylor de la aplicación exponencial hasta orden 3 de una subvariedad $M$ inmersa en $\r n.$ Nuestro principal objetivo es mostrar su utilidad en el estudio de contactos especiales de subvariedades con modelos geométricos.
A medida que analizamos los contactos de orden mayor, la complejidad de las cuentas aumenta.
En este trabajo, a través del desarrollo de Taylor de la aplicación exponencial, caracterizamos la geometría de orden mayor que $3$ en términos de invariantes geométricos de la inmersión, por lo que el trabajo con las cuentas en casos especiales se convierte en más manejable. Esto nos permite también obtener nuevos resultados geométricos.
En la segunda parte de la tesis se introduce el concepto de punto crítico de una aplicación regular entre subvariedades. Si consideramos una variedad diferenciable $M$ de dimensión $k$ e inmersa en $\r{k+n},$ sabemos que su conjunto focal puede ser interpretado como la imagen de los puntos críticos de la {\it aplicación normal} $\nu(m,u): NM\to \r{k+n}$ definida por $\nu(m,u)=\pi_N(m,u)+
u,$ para $m\in M$ y $u\in N_mM,$ donde $\pi_N:NM\to M$ denota el fibrado normal.
De la misma manera, el conjunto parabólico de una subvariedad diferencial viene dado por el análisis de las singularidades de la función altura sobre la subvariedad.
Si consideramos una subvariedad $M$ de dimensión $k$ e inmersa en
$\r{k+n},$ sabemos que su conjunto parabólico puede ser interpretado como la imagen de los puntos críticos de la {\it aplicación generalizada de Gauss} $\psi(m,u): NM\to \r{k+n}$ definida por $\psi(m,u)= u,$ donde $u\in N_mM.$
Finalmente, caracterizamos las direcciones asintóticas como el conjunto de direcciones del tangente de una subvariedad $M$ de dimensión $k$ e inmersa en
$\r{k+n}$ a través del estudio de las singularidades de la aplicación tangente
$\Omega(m,y): TM\to \r{k+n}$ definida por $\Omega(m,y)=\pi(m,y)+y,$
para $y\in T_mM,$ donde $\pi:TM\to M$ denota el fibrado tangente.
Describimos primero el conjunto focal y su relación geométrica con la Veronese de curvatura para una variedad $k$ dimensional inmersa en $\r{k+n}.$ Entonces, definimos los puntos $r$-críticos de una aplicación $f:H \to K$ entre dos subvariedades y caracterizamos los puntos $2$ y $3$ críticos de la aplicación normal y la aplicación generalizada de Gauss. El número de estos puntos críticos en $m\in M$ depende de la degeneración de la elipse de curvatura y calculamos ese número en el caso particular de una superficie inmersa en $\r{4}$ para la aplicación normal y $\r{5}$ para la aplicación generalizada de Gauss. / [CA] En general, l'estudi del contacte amb hiperplans i hiperesferes s'ha dut a terme utilitzant la família de funcions altura i la funció distància al quadrat. A la primera part de la tesi analitzem el desenvolupament de Taylor de l'aplicació exponencial fins a ordre 3 d'una subvarietat $M$ immersa en $\r n.$ El nostre principal objectiu és mostrar la seua utilitat en l'estudi de contactes especials de subvarietats amb models geomètrics.
A mesura que analitzem els contactes d'ordre major, la complexitat dels comptes augmenta.
En aquest treball, a través del desenvolupament de Taylor de l'aplicació exponencial, caracteritzem la geometria d'ordre major que $ 3 $ en termes d'invariants geomètrics de la immersió, de manera que el treball amb els comptes en casos especials es converteix en més manejable.
Això ens permet també obtenir nous resultats geomètrics.
A la segona part de la tesi s'introdueix el concepte de punt crític d'una aplicació regular entre subvarietats. Si considerem una varietat diferenciable $ M $ de dimensió $ k $ i immersa en
$ \r {k + n}, $ sabem que el seu conjunt focal pot ser interpretat com la imatge dels punts crítics de la {\it aplicació normal} $ \nu (m, u): NM \to \r {k + n} $ definida per $ \nu (m, u) = \pi_N (m, u) +
o, $ per $ m \in M $ i $ u \in N_mM, $ on $ \pi_N: NM \to M $ denota el fibrat normal.
De la mateixa manera, el conjunt parabòlic d'una subvarietat diferencial ve donat per l'anàlisi
de les singularitats de la funció altura sobre la subvarietat.
Si considerem una subvarietat $ M $ de dimensió $ k $ i immersa en
$ \r {k + n}, $ sabem que el seu conjunt parabòlic pot ser interpretat com la imatge dels punts crítics de la {\it aplicació generalitzada de Gauss} $ \psi (m, u): NM \to \r{k + n} $ definida per $ \psi (m, u) = u, $ on $ u \in N_mM. $
Finalment, caracteritzem les direccions asimptòtiques com el conjunt de direccions del tangent d'una subvarietat $ M $ de dimensió $ k $ i immersa en $ \r{k + n} $ a través de l'estudi de les singularitats de l'aplicació tangent $ \Omega (m, y): TM \to \r {k + n} $ definida per $ \Omega (m, y) = \pi (m, y) + y, $
per $ y \in T_mM, $ on $ \pi: TM \to M $ denota el fibrat tangent.
Descrivim primer el conjunt focal i la seva relació geomètrica amb la Veronese de curvatura per a una varietat $ k $ dimensional immersa en $ \r{k + n}. $ Llavors, definim els punts $ r $-crítics d'una aplicació $ f: H \to K $ entre dues subvarietats i caracteritzem els punts $ 2 $ i $ 3 $ crítics de l'aplicació normal i l'aplicació generalitzada de Gauss. El nombre d'aquests punts crítics en
$ m \in M $ depèn de la degeneració de l'el·lipse de curvatura i calculem aquest nombre en el cas particular d'una superfície immersa en $ \r{4} $ per a l'aplicació normal i $ \r{5} $ per a l'aplicació generalitzada de Gauss. / García Monera, M. (2015). r-critical points and Taylor expansion of the exponential map, for smooth immersions in Rk+n [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/50935
|
2 |
Autour des nombres de Tamagawa / On Tamagawa NumbersLaurent, Arthur 28 June 2013 (has links)
Les nombres de Tamagawa des courbes elliptiques apparaissent dans la formulation de la conjecture de Birch et Swinnerton-Dyer comme certains facteurs locaux. Bloch et Kato (1990) ont trouvé une vaste généralisation de cette définition classique en termes de la théorie de Hodge p-adique. Ils ont associé un nombre de Tamagawa Tam(T) à tout réseau T de représentations p-adiques de de Rham au sens de J.-M. Fontaine. Ces nombres interviennent dans les conjectures de Bloch et Kato sur les valeurs spéciales des fonctions L des motifs.J.-M. Fontaine et B.Perrin-Riou ont formulé une conjecture reliant Tam(T) et le nombre de Tamagawa Tam(T*}(1)) de la représentation duale. Cette conjecture est connue pour les représentations cristallines ce qui permet de calculer explicitement les nombres de Tamagawa des représentations cristallines dont les poids de Hodge-Tate sont tous positifs. En revanche, dans la plupart des autres cas, nous n'avons pas de méthode de calcul explicite. Cette thèse a pour but de donner un encadrement des nombres de Tamagawa des représentations absolument cristallines le long de la tour cyclotomique sans hypothèses supplémentaires sur les poids de Hodge-Tate. Le premier chapitre de cette thèse est dédié à des rappels sur la théorie de Hodge p-adique, la classification de Fontaine des représentations p-adique de corps locaux via la théorie des (phi, Gamma)-modules, sur la cohomologie galoisienne, sur les modules de Wach ou sur la cohomologie d'Iwasawa. Le second chapitre est dédié à l'exponentielle de Bloch and Kato. Seront rappelées sa définition et sa construction de l'exponentielle de Bloch and Kato en termes de (phi, Gamma)-modules faite par D.Benois. Cette dernière construction permet de généraliser deux résultats de D.Benois et L.Berger qui relient l'exponentielle aux modules de Wach et qui permet de décrire des objets qui apparaissent naturellement dans l'étude des nombres de Tamagawa. Le dernier chapitre est le cœur de cette thèse. Nous commencerons en définissant les nombres de Tamagawa Tam(T) et en donnant certaines propriétés et résultats déjà connus. Nous énonçons ensuite le théorème final qui donne un encadrement des nombres de Tamagawa d'une représentation absolument cristalline V. Y sont également donnés certains cas d'égalité qui permettent de retrouver des formules connues --- lorsque V est positive ou lorsqu'elle provient d'une courbe elliptique et plus généralement d'un groupe formel de dimension 1 et de hauteur 2. Pour prouver ces résultats, nous écrivons les nombres de Tamagawa sous forme d'un indice généralisé dans lequel apparaissent les objets étudiés dans le chapitre précédent. La thèse se termine avec l'étude de plusieurs cas particuliers qui permettent de retrouver des résultats déjà connus. / Tamagawa numbers of elliptic curves appear in the Birch and Swinnerton-Dyer conjecture as local factors. Bloch and Kato generalized the definition using p-adic Hodge theory in 1990. Indeed they associated a number Tam(T) to each lattice T of de Rham representation in the sense of J-M\,Fontaine. This Tamagawa numbers are used in the conjectures of Bloch and Kato on the special values of L-functions of motives.J-M\,Fontaine and B.\,Perrin-Riou expressed a conjecture linking Tam(T) to the Tamagawa number Tam(T*(1)) of the dual representation. This conjecture is now well known for crystalline representations. This yields an explicit formula for Tamagawa number of crystalline p-adic representations having positive Hodge-Tate weights.On the other hand, we have no explicit formula for Tamagawa numbers of most of the crystalline representations. The purpose of the thesis is to give bounds of Tamagawa numbers of crystalline p-adic representations of unramified local field along the cyclotomic tower without further conditions on the Hodge-Tate weights.The first chapter of this thesis is dedicated to reminders on p-adic Hodge-Tate theory, Fontaine's classification of p-adic representations of local fields via (phi, Gamma)-modules, Galois and Iwasawa cohomology, Wach modules etc.The second chapter is dedicated to the Bloch and Kato's exponential map. We will recall its definition and its construction in terms of (phi, Gamma)-modules due to D.Benois. This construction will lead to the generalization of two results of D.\,Benois and L.\,Berger which link the exponential map and Wach modules and give a good description of the objects which naturally appear in the study of Tamagawa numbers.The last chapter is the heart of the thesis. We will begin by giving a definition of Tamagawa number Tam(T) and some first properties and results on theses numbers.We will next express the main theorems which give bounds of Tamagawa numbers of crystalline p-adic representations of unramified local field along the cyclotomic tower. We will also give equality conditions. This allows us to recover already known results such as Tamagawa numbers of positive crystalline representations or of representations coming from elliptic curves.To prove these results, we will write Tamagawa numbers as a generalized index of the modules defined in terms of Wach modules. Theses modules have been deeply studied in the second chapter of this thesis.
|
Page generated in 0.0724 seconds