Spelling suggestions: "subject:"1expression"" "subject:"dexpression""
731 |
H3K36me3 in Muscle Differentiation: Regulation of Tissue-specific Gene Expression by H3K36-specific HistonemethyltransferasesDhaliwal, Tarunpreet 19 December 2012 (has links)
The dynamic changes in chromatin play a significant role in lineage commitment and differentiation. These epigenetic modifications control gene expression through recruitment of transcription factors. While the active mark H3K4me3 is present around the transcription start site on the gene, the function of the H3K36me3 mark is unknown. A number of H3K36-specific histone methyltransferases (HMTs) have been identified, however the focus of this study is the HMT Hypb. To elucidate the role of H3K36me3 in mediating expression of developmentally-regulated loci, native chromatin immunoprecipitation (N-ChIP) was performed at a subset of genes. Upon differentiation, we observe that H3K36me3 becomes enriched at the 3’ end of several muscle-specific genes. To further investigate the role of H3K36me3 in myogenesis, a lentiviral-mediated knockdown of the H3K36 HMT Hypb was performed in muscle myoblasts using shRNA. Upon Hypb knockdown, we were surprised to observe enhanced myogenesis. N-ChIP was also performed on differentiated Hypb knockdown cell lines in order to look at H3K36me3 enrichment on genes involved in muscle differentiation. N-ChIP data show a drop in H3K36me3 enrichment levels on myogenin and Ckm genes. The possible occupancy of Hypb on the coding regions of muscle-specific genes was experimentally observed by cross-linked chromatin immunoprecipitation (X-ChIP) on differentiated C2C12 cells and subsequently confirmed by X-ChIP on knockdown lines where the occupancy was lost. A model is proposed that links the observed phenotype with H3K36me3.
|
732 |
Mechanisms of Genetic Resistance To Dioxin-induced LethalityMoffat, Ivy D. 28 July 2008 (has links)
Dioxins are environmental contaminants that raise concern because they are potent and persistent. The most potent dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), causes a wide variety of biochemical and toxic effects in laboratory animals and in humans. Major toxicities of TCDD are initiated by their binding to the AH receptor (AHR), a ligand-activated transcription factor that regulates expression of numerous genes. However, the specific genes whose dysregulation leads to major toxicities such as wasting, hepatotoxicity, and lethality are unknown. The objective of this thesis research was to identify the molecular mechanisms by which dioxins cause lethality. To this end, a powerful genetic rat model was utilized – the Han/Wistar (Kuopio) rat which is highly resistant to dioxin toxicity due to a major deletion in the AHR’s transactivation domain (TAD) leading to 3 potential AHR variant transcripts. We found that insertion-variant transcripts (IVs) are the dominant forms of AHR expressed in H/W rats, constitutively and after TCDD treatment. Gene expression array analysis revealed that the total number of TCDD-responsive genes in liver was significantly lower in H/W rats (that carry the TAD deletion) than in dioxin-sensitive rats (that carry wildtype AHR). Genes that are well-known to be AHR-regulated and dioxin-inducible such as CYP1 transcripts remained responsive to TCDD in H/W rats; thus the TAD deletion selectively interferes with expression of a subset of hepatic genes rather than abolishing global AHR-mediated responses. Genes that differed in response to TCDD between dioxin-sensitive rats and dioxin-resistant rats are integral parts of pathways known to be disrupted by dioxin treatment such as protein synthesis/degradation, fatty acid transport/metabolism, and apoptosis. These genes are worthy candidates for further mechanistic studies to test their role in major dioxin toxicities. Numerous differentially-regulated genes were downregulated; however, microRNAs, which downregulate mRNA levels in other systems, likely play no role in downregulation of mRNAs by dioxins in adult liver and are unlikely to be involved in hepatotoxicity. Findings in this research support the hypothesis that H/W rats are resistant to TCDD lethality because the TAD deletion prevents the AHR from dysregulating specific mRNA transcripts but not hepatic miRNAs.
|
733 |
Effects of Sam68 on HIV-1 RNA Processing and Gene ExpressionMcLaren, Meredith Lee 20 January 2009 (has links)
The unspliced 9kb HIV-1 RNA (encoding Gag and GagPol) can undergo multiple splicing events to produce members of the 4kb (encoding Env, Vif, Vpr, and Vpu) or 2kb (encoding Tat, Rev and Nef), respectively. The incompletely spliced 9 and 4kb viral RNAs are exported by HIV-1 Rev which interacts with the RRE (Rev responsive element) in these RNAs as well as the nuclear export receptor Crm1. Several proteins can modulate Rev function and/or HIV-1 gene expression, including the nuclear phosphorprotein Sam68. We have found that overexpression of Sam68 stimulates HIV-1 structural gene expression and increases the proportion of unspliced, 3’ end processed viral RNA. This activity requires the RNA binding activity of Sam68. Surprisingly, Sam68 overexpression does not increase the proportion of unspliced, cleaved RNA found in the cytoplasm, suggesting that Sam68 alters the viral RNP to increase its translation. The Sam68 related proteins Slm1 and Slm2 also stimulate 3’ end cleavage and expression of unspliced HIV-1 RNAs. Sam68 and Slm2 were expressed in Hela cells, whereas Slm1 was not. Therefore, we reduced Sam68 expression alone or in combination with Slm2 to determine if these proteins were required for HIV-1 RNA processing or expression. Knockdown of Sam68 and/or Slm2 had little to no effect on viral RNA cleavage or structural gene expression from transiently transfected reporters. Furthermore, depletion of Sam68 only slightly reduced Gag expression from a stably expressed proviral reporter. These results suggest that additional redundant proteins may be present that functionally replace Sam68 and Slm2. We defined a region encompassing the N-terminal GSG (GRP33, Sam68, Gld1) and KH RNA binding motif as the minimal region of Sam68 required to stimulate HIV-1 gene expression in 293 and 293T cells. The minimal mutant enhanced unspliced RNA cleavage in 293T, but not in 293 cells suggesting that Sam68 may act at other stage of the viral lifecycle to increase gene expression.
|
734 |
Agrobacterium-mediated transformation of hybrid poplar (Populus alba x P. grandidentata) and analysis of foreign gene expressionHowe, Glenn Thomas 18 June 1991 (has links)
A method for Agrobacterium-mediated transformation of hybrid
poplar (Populus alba x P. grandidentata) suspension cultures and
regeneration of transformed plants is described. The best protocol
was one in which suspension cultures were inoculated with
Agrobacterium tumefaciens to a density of 10⁷ cfu's/ml, cocultivated
for 48 hours, plated to cellulose acetate filters at a density of 14
colonies/mm², and cultured on medium containing 1 mg/1 2,4-D.
Although cefotaxime inhibited callus growth, it was used in the
plating medium to suppress proliferation of Agrobacterium. Selection
appeared to be more reliable using hygromycin as compared to
kanamycin or geneticin (G418). Transgenic plants were regenerated by
culturing the calli on media containing thidiazuron, but no shoots
could be regenerated using BA. / Graduation date: 1992
|
735 |
Altered Gene Expression and Behaviour in a Drosophila Model for Chronic Oxidative StressHuston, Andrea 08 December 2011 (has links)
Reactive oxygen species (ROS) are a by-product of aerobic metabolism and have been implicated in cancer, arthrosclerosis, diabetes and aging. Antioxidant enzymes, such as superoxide dismutase (SOD), work to neutralize ROS and oxidative stress occurs when the antioxidant capacity of the cell is overwhelmed. Using a Drosophila mutant with defective cytoplasmic SOD function (cSODn108), we are able to study the consequences of excess ROS on gene expression. Microarray experiments indicate gene expression changes associated with immune response, heat shock, detoxification, proteolysis, carbohydrate metabolism, lipid metabolism and behaviour. Behavioural and physiological assays investigated possible phenotypes predicted by changes in gene expression. We found that cSODn108 mutants feed less yet demonstrate a remarkable resistance to starvation. In addition, cSODn108 mutants show a reduced response to sucrose, odorants and decreased locomotor activity. These phenotypes correlate with observed gene expression changes and suggest a potentially altered energy metabolism in response to chronic oxidative stress.
|
736 |
Exploring Predictors of Performance on a Curriculum-based Measure of Written ExpressionAitken, Madison Lee 28 November 2011 (has links)
The role of gender, handwriting automaticity, reading proficiency, and verbal working memory in grade 4 and 5 students‟ (N = 42; 23 boys) performance on a curriculum-based measure of narrative writing was examined. Three outcomes were measured: total words written, correct minus incorrect word sequences (accurate production of spelling and grammar in-text), and composition quality. Gender (girls > boys) and handwriting automaticity were significant predictors of total words written, and gender (girls > boys), reading proficiency, and grade (5 > 4) significantly predicted correct minus incorrect word sequences scores. Total words written was the only significant predictor of composition quality. The results suggest that reading proficiency and handwriting automaticity should be assessed alongside written expression in order to identify children at risk for writing difficulties and to inform instructional recommendations for these individuals.
|
737 |
Exploring Predictors of Performance on a Curriculum-based Measure of Written ExpressionAitken, Madison Lee 28 November 2011 (has links)
The role of gender, handwriting automaticity, reading proficiency, and verbal working memory in grade 4 and 5 students‟ (N = 42; 23 boys) performance on a curriculum-based measure of narrative writing was examined. Three outcomes were measured: total words written, correct minus incorrect word sequences (accurate production of spelling and grammar in-text), and composition quality. Gender (girls > boys) and handwriting automaticity were significant predictors of total words written, and gender (girls > boys), reading proficiency, and grade (5 > 4) significantly predicted correct minus incorrect word sequences scores. Total words written was the only significant predictor of composition quality. The results suggest that reading proficiency and handwriting automaticity should be assessed alongside written expression in order to identify children at risk for writing difficulties and to inform instructional recommendations for these individuals.
|
738 |
Altered Gene Expression and Behaviour in a Drosophila Model for Chronic Oxidative StressHuston, Andrea 08 December 2011 (has links)
Reactive oxygen species (ROS) are a by-product of aerobic metabolism and have been implicated in cancer, arthrosclerosis, diabetes and aging. Antioxidant enzymes, such as superoxide dismutase (SOD), work to neutralize ROS and oxidative stress occurs when the antioxidant capacity of the cell is overwhelmed. Using a Drosophila mutant with defective cytoplasmic SOD function (cSODn108), we are able to study the consequences of excess ROS on gene expression. Microarray experiments indicate gene expression changes associated with immune response, heat shock, detoxification, proteolysis, carbohydrate metabolism, lipid metabolism and behaviour. Behavioural and physiological assays investigated possible phenotypes predicted by changes in gene expression. We found that cSODn108 mutants feed less yet demonstrate a remarkable resistance to starvation. In addition, cSODn108 mutants show a reduced response to sucrose, odorants and decreased locomotor activity. These phenotypes correlate with observed gene expression changes and suggest a potentially altered energy metabolism in response to chronic oxidative stress.
|
739 |
Gene expression profiling in <i>Saccharomyces cerevisiae</i> grown at different specific gravity environmentsYang, Danmei 05 December 2007
The global gene expression profiles of industrial strains of <i>Saccharomyces cerevisiae</i> responding to nitrogen deficiency and very high sugar concentrations stresses were determined by oligonucleotide microarray analysis of ~ 6200 yeast open reading frames. Genomics analysis showed that 400 genes in S. cerevisiae was differentially expressed by more than 1.5-fold compared with controls at late-logarithmic phase of fermentation, as the yeast adapted to changing nutritional, environmental and physiological conditions. The genes of many pathways are regulated in a highly coordinated manner. The repressed expression of GDH1 and up-regulation of ARO10 within the contrast of Q270/Q10 indicated high energy demanding of yeast cells under high sugar stress. Activities of G3P shuttle indicated that under very high gravity environment, sufficient assimilatory nitrogen enhances yeasts ability of redox balancing, and therefore higher stress-tolerance and higher fermentation efficiency of yeast. Under contrast W270/Q270, the up-regulation of DUR1,2 responsible for urea degradation induces the glutamate biosynthesis and the consumption of -ketoglutarate. This may indicate that higher nitrogen level would enable higher activities in the TCA cycle, and therefore generate more energy for biosynthesis and yeast cell proliferation under very high gravity fermentation conditions. Nitrogen metabolism was also stimulated by high nitrogen level when yeast was grown in very high gravity environment.
|
740 |
Simulators for formal languages, automata and theory of computation with focus on JFLAPFransson, Tobias January 2013 (has links)
This report discusses simulators in automata theory and which one should be best for use in laboratory assignments. Currently, the Formal Languages, Automata and Theory of Computation course (FABER) at Mälardalen University uses the JFLAP simulator for extra exercises. To see if any other simulators would be useful either along with JFLAP or standalone, tests were made with nine programs that are able to graphically simulate automata and formal languages. This thesis work started by making an overview of simulators currently available.After the reviews it has become clear to the author that JFLAP is the best choice for majority of cases. JFLAP is also the most popular simulator in automata theory courses worldwide.To support the use of JFLAP for the course a manual and course assignments are created to help the student to getting started with JFLAP. The assignments are expected to replace the current material in the FABER course and to help the uninitiated user to get more out of JFLAP.
|
Page generated in 0.073 seconds