Spelling suggestions: "subject:"extended multiattribute profiles"" "subject:"extended multiatribute profiles""
1 |
Multiple classifier systems for the classification of hyperspectral data / ystème de classifieurs multiple pour la classification de données hyperspectralesXia, Junshi 23 October 2014 (has links)
Dans cette thèse, nous proposons plusieurs nouvelles techniques pour la classification d'images hyperspectrales basées sur l'apprentissage d'ensemble. Le cadre proposé introduit des innovations importantes par rapport aux approches précédentes dans le même domaine, dont beaucoup sont basées principalement sur un algorithme individuel. Tout d'abord, nous proposons d'utiliser la Forêt de Rotation (Rotation Forest) avec différentes techiniques d'extraction de caractéristiques linéaire et nous comparons nos méthodes avec les approches d'ensemble traditionnelles, tels que Bagging, Boosting, Sous-espace Aléatoire et Forêts Aléatoires. Ensuite, l'intégration des machines à vecteurs de support (SVM) avec le cadre de sous-espace de rotation pour la classification de contexte est étudiée. SVM et sous-espace de rotation sont deux outils puissants pour la classification des données de grande dimension. C'est pourquoi, la combinaison de ces deux méthodes peut améliorer les performances de classification. Puis, nous étendons le travail de la Forêt de Rotation en intégrant la technique d'extraction de caractéristiques locales et l'information contextuelle spatiale avec un champ de Markov aléatoire (MRF) pour concevoir des méthodes spatio-spectrale robustes. Enfin, nous présentons un nouveau cadre général, ensemble de sous-espace aléatoire, pour former une série de classifieurs efficaces, y compris les arbres de décision et la machine d'apprentissage extrême (ELM), avec des profils multi-attributs étendus (EMaPS) pour la classification des données hyperspectrales. Six méthodes d'ensemble de sous-espace aléatoire, y compris les sous-espaces aléatoires avec les arbres de décision, Forêts Aléatoires (RF), la Forêt de Rotation (RoF), la Forêt de Rotation Aléatoires (Rorf), RS avec ELM (RSELM) et sous-espace de rotation avec ELM (RoELM), sont construits par multiples apprenants de base. L'efficacité des techniques proposées est illustrée par la comparaison avec des méthodes de l'état de l'art en utilisant des données hyperspectrales réelles dans de contextes différents. / In this thesis, we propose several new techniques for the classification of hyperspectral remote sensing images based on multiple classifier system (MCS). Our proposed framework introduces significant innovations with regards to previous approaches in the same field, many of which are mainly based on an individual algorithm. First, we propose to use Rotation Forests with several linear feature extraction and compared them with the traditional ensemble approaches, such as Bagging, Boosting, Random subspace and Random Forest. Second, the integration of the support vector machines (SVM) with Rotation subspace framework for context classification is investigated. SVM and Rotation subspace are two powerful tools for high-dimensional data classification. Therefore, combining them can further improve the classification performance. Third, we extend the work of Rotation Forests by incorporating local feature extraction technique and spatial contextual information with Markov random Field (MRF) to design robust spatial-spectral methods. Finally, we presented a new general framework, Random subspace ensemble, to train series of effective classifiers, including decision trees and extreme learning machine (ELM), with extended multi-attribute profiles (EMAPs) for classifying hyperspectral data. Six RS ensemble methods, including Random subspace with DT (RSDT), Random Forest (RF), Rotation Forest (RoF), Rotation Random Forest (RoRF), RS with ELM (RSELM) and Rotation subspace with ELM (RoELM), are constructed by the multiple base learners. The effectiveness of the proposed techniques is illustrated by comparing with state-of-the-art methods by using real hyperspectral data sets with different contexts.
|
Page generated in 0.1 seconds