• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Verificação de assinaturas off-line: uma abordagem baseada na combinação de distâncias e em classificadores de uma classe

Rodrigues Pinheiro de Souza, Milena 31 January 2009 (has links)
Made available in DSpace on 2014-06-12T15:56:31Z (GMT). No. of bitstreams: 2 arquivo2943_1.pdf: 1753239 bytes, checksum: 9bb54530f2681d310412190da2d1397f (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009 / Esta dissertação oferece contribuições para o problema de verificação de assinaturas off-line através da utilização de diferentes distâncias e classificadores de apenas uma classe. O uso de classificadores de uma classe viabiliza a utilização de apenas assinaturas verdadeiras durante a fase de treinamento do sistema. Isso é vantajoso pois em diversas aplicações reais de verificação de assinaturas existe uma carência de assinaturas falsas em detrimento do número de assinaturas verdadeiras. Esse trabalho também realiza uma comparação entre os resultados dos diferentes classificadores de uma classe escolhidos e de três métodos de extração de características implementados: Shadow Code, Características Periféricas e Diferenciais Periféricas e Elementos Estruturais. Afora isso, foram calculadas cinco distâncias utilizando as características extraídas: dmin, dmax, dcentral , dtemplate e dncentral . Essas distâncias foram normalizadas de forma a tornar o sistema independente de classe. E posteriormente combinadas usando as seguintes regras: produto, média, máximo, mínimo e soma. De forma a avaliar a contribuição de cada etapa no desempenho do sistema, este foi subdividido em quatro arquiteturas. Para isso, partiu-se de uma arquitetura mais simples, e foram sendo adicionadas novas etapas a ela. Dessa forma, foi possível identificar que, dentre as extrações utilizadas neste trabalho, o método Shadow Code obteve um grande destaque. O mesmo pode ser dito para as distâncias dcentral e dncentral , que apresentaram melhores resultados que as demais: dmin, dmax e dtemplate. As combinações das distâncias apresentaram resultados discrepantes, algumas combinações pioraram o desempenho do sistema, enquanto outras provocaram um efeito positivo. Foram utilizadas duas bases de dados: Base de Dados 1 (base de dados de assinaturas desenvolvida em pesquisa anterior) e Base de Dados 2 (base de dados de assinaturas disponibilizada em competição para sistemas de verificação de assinaturas). O melhor resultado geral do sistema, para a Base de Dados 1, e considerando 10% de falsos positivos, foi de 93,37% de verdadeiros positivos para as assinaturas falsas aleatórias, 59,18% para as assinaturas falsas habilidosas e 75,85% usando ambas
2

Identificação dos sintomas de ferrugem em áreas cultivadas com cana-de-açúcar / Identification of symptoms of rust in sugar cane plantations.

Dias, Desirée Nagliati 16 February 2004 (has links)
Áreas cultivadas com cana-de-açúcar podem sofrer o ataque do fungo Puccinia melanocephala e variedades suscetíveis desenvolvem uma doença conhecida por ferrugem da cana-de-açúcar. Por afetar, geralmente, áreas imensas, os prejuízos são grandes. Atualmente, a avaliação da doença é feita por especialistas que percorrem as áreas plantadas analisando visualmente as folhas e atribuindo à região um determinado grau de infecção. Esse modelo pode ser considerado subjetivo pois, dependendo da experiência e acuidade visual do especialista, a avaliação de uma mesma área pode apresentar resultados divergentes. Diante desta situação, este trabalho apresenta uma abordagem para automatizar o processo de identificação e avaliação, criando alternativas para minimizar os prejuízos. Este trabalho apresenta um método para classificação dos níveis de infecção da ferrugem por meio da análise de imagens aéreas de canaviais, adquiridas por um aeromodelo. Dessas fotos são extraídas características baseadas nas cores, as quais são classificadas por meio de uma rede neural backpropagation. Além disso, foi implementado um método para segmentação de imagens digitais de folhas de cana-de-açúcar infectadas com o intuito de corroborar a avaliação manual feita por especialistas. Os resultados mostram que o método é eficaz na discriminação dos três níveis de infecção disponíveis, além disso, indicam que este pode ser igualmente eficiente na discriminação dos nove níveis de infecção da escala adotada. / Cultivated areas of sugar cane may be targeted by the fungus Puccinia melanocephala and susceptible varieties may develop a disease known as sugar cane rust. Because the disease affects, in general, very large areas, the losses are very considerable. Currently, the evaluation of the disease is carried out by experts who must walk through the plantations analysing the leaves visually and assigning a certain degree of infection to the area. This model is somehow subjective because, due to experts’ experience and visual acuity, the evaluation for a specific area may present divergent results. In face of this problem, this work presents an approach to automate the process of identification and evaluation of the disease, as a new means to minimise the losses. This work shows a method to classify the infection levels of sugar cane rust through the analysis of aerial images of sugar cane plantations, acquired by an aeromodel. From these pictures, some characteristics are based on colours are extracted and further classified by a Backpropagation Neural Network. Furthermore, it has been implemented a method for the segmentation of digital images of sugar cane leaves infected by rust. This is done to corroborate the manual evaluation done by experts. The results have shown that the method is capable of discriminating the three levels of infection available and they also indicate that it can also be equally efficient in the discrimination of the nine distinct infection levels of the adopted scale.
3

Identificação dos sintomas de ferrugem em áreas cultivadas com cana-de-açúcar / Identification of symptoms of rust in sugar cane plantations.

Desirée Nagliati Dias 16 February 2004 (has links)
Áreas cultivadas com cana-de-açúcar podem sofrer o ataque do fungo Puccinia melanocephala e variedades suscetíveis desenvolvem uma doença conhecida por ferrugem da cana-de-açúcar. Por afetar, geralmente, áreas imensas, os prejuízos são grandes. Atualmente, a avaliação da doença é feita por especialistas que percorrem as áreas plantadas analisando visualmente as folhas e atribuindo à região um determinado grau de infecção. Esse modelo pode ser considerado subjetivo pois, dependendo da experiência e acuidade visual do especialista, a avaliação de uma mesma área pode apresentar resultados divergentes. Diante desta situação, este trabalho apresenta uma abordagem para automatizar o processo de identificação e avaliação, criando alternativas para minimizar os prejuízos. Este trabalho apresenta um método para classificação dos níveis de infecção da ferrugem por meio da análise de imagens aéreas de canaviais, adquiridas por um aeromodelo. Dessas fotos são extraídas características baseadas nas cores, as quais são classificadas por meio de uma rede neural backpropagation. Além disso, foi implementado um método para segmentação de imagens digitais de folhas de cana-de-açúcar infectadas com o intuito de corroborar a avaliação manual feita por especialistas. Os resultados mostram que o método é eficaz na discriminação dos três níveis de infecção disponíveis, além disso, indicam que este pode ser igualmente eficiente na discriminação dos nove níveis de infecção da escala adotada. / Cultivated areas of sugar cane may be targeted by the fungus Puccinia melanocephala and susceptible varieties may develop a disease known as sugar cane rust. Because the disease affects, in general, very large areas, the losses are very considerable. Currently, the evaluation of the disease is carried out by experts who must walk through the plantations analysing the leaves visually and assigning a certain degree of infection to the area. This model is somehow subjective because, due to experts’ experience and visual acuity, the evaluation for a specific area may present divergent results. In face of this problem, this work presents an approach to automate the process of identification and evaluation of the disease, as a new means to minimise the losses. This work shows a method to classify the infection levels of sugar cane rust through the analysis of aerial images of sugar cane plantations, acquired by an aeromodel. From these pictures, some characteristics are based on colours are extracted and further classified by a Backpropagation Neural Network. Furthermore, it has been implemented a method for the segmentation of digital images of sugar cane leaves infected by rust. This is done to corroborate the manual evaluation done by experts. The results have shown that the method is capable of discriminating the three levels of infection available and they also indicate that it can also be equally efficient in the discrimination of the nine distinct infection levels of the adopted scale.

Page generated in 0.0818 seconds