• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Critical Factors Involved in Intestinal Chylomicron Assembly

Webb, Jennifer P. 28 July 2010 (has links)
Assembly of intestinal chylomicron particles (lipid-protein complexes) is the fundamental mechanism by which we absorb dietary fat. Two intestinal lipid transporters, Cluster of Differentiation 36 (CD36) and fatty acid-binding protein 1 (FABP1), have been shown to play a role in lipid absorption, however, it remains unclear how knockdown of these proteins bleads to aberrant intestinal chylomicron secretion. In an enterocyte-like cell culture model, Caco-2 cells, we hypothesized that knockdown of CD36 or FABP1 using short-hairpin RNA interference techniques would impair triacylglycerol (TG) and apolipoprotein B (apoB) secretion. Surprisingly, knockdown of these lipid transporters lead to an increase in TG and apoB secretion that was associated with an increase in fatty acid synthase and fatty acid transport protein 4 (FATP4) protein levels. De novo fatty acid synthesis was slightly increased in CD36-, but not FABP1-knockdown Caco-2 cells. This study highlights the importance of fatty acid targeting in regulating chylomicron production.
2

Critical Factors Involved in Intestinal Chylomicron Assembly

Webb, Jennifer P. 28 July 2010 (has links)
Assembly of intestinal chylomicron particles (lipid-protein complexes) is the fundamental mechanism by which we absorb dietary fat. Two intestinal lipid transporters, Cluster of Differentiation 36 (CD36) and fatty acid-binding protein 1 (FABP1), have been shown to play a role in lipid absorption, however, it remains unclear how knockdown of these proteins bleads to aberrant intestinal chylomicron secretion. In an enterocyte-like cell culture model, Caco-2 cells, we hypothesized that knockdown of CD36 or FABP1 using short-hairpin RNA interference techniques would impair triacylglycerol (TG) and apolipoprotein B (apoB) secretion. Surprisingly, knockdown of these lipid transporters lead to an increase in TG and apoB secretion that was associated with an increase in fatty acid synthase and fatty acid transport protein 4 (FATP4) protein levels. De novo fatty acid synthesis was slightly increased in CD36-, but not FABP1-knockdown Caco-2 cells. This study highlights the importance of fatty acid targeting in regulating chylomicron production.

Page generated in 0.0178 seconds