• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vias de síntese e degradação de proteínas no músculo esquelético após atrofia por desuso: modulação por ácidos graxos ômega-3. / Protein synthesis and degradation signaling in skeletal muscle after muscle disuse atrophy: modulation by omega-3 fatty acids.

Nassr, Gabriel Nasri Marzuca 31 January 2017 (has links)
Avaliamos no presente estudo: 1) os efeitos do desuso das patas traseiras de ratos por duas semanas sobre as vias de sinalização de síntese e degradação de proteínas no músculo sóleo e a administração de óleos de peixe ricos em eicosapentaenóico (EPA) ou docosaexaenóico (DHA) e 2) as alterações induzidas pelo desuso no músculo sóleo em camundongos FAT-1. Concluímos que, apesar da variação pequena na razão ácidos graxos ômega-6/ômega-3, efeitos significativos da oferta aumentada de ácidos graxos ômega-3 foram observados na área de seção transversa e vias de sinalização relacionadas à síntese e degradação de proteínas no músculo sóleo nos dois protocolos. / We investigated herein: 1) the effects skeletal muscle disuse atrophy induced by two-week hind limb suspension (HS) on protein synthesis and degradation signaling in soleus muscle and the administration of either eicosapentaenoic (EPA) or docosahexaenoic (DHA)-rich fish oil supplementation, and 2) the changes induced by hind limb disuse on soleus muscle of Fat-1 transgenic mice. We concluded that, in spite of the small variation in the omega-6/omega-3 fatty acid ratio, significant effects of the increased omega-3 fatty acid levels were observed on the CSA and signaling pathways associated with soleus muscle protein synthesis and degradation in both experimental protocols.
2

Viral Delivery of the Fat-1 Gene to Treat Post-Traumatic Arthritis with Diet-Induced Obesity

Kimmerling, Kelly Ann January 2016 (has links)
<p>Post-traumatic arthritis (PTA) is arthritis that develops following joint injury, including meniscus and ligament tears. Current treatments for PTA range from over-the-counter medication to knee replacement; however, in the presence of obesity, the levels of pro-inflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-α,) are more elevated than in non-obese individuals. The role of fatty acids, obesity, and PTA has been examined, with omega-3 fatty acids showing promise as an anti-inflammatory after injury due to its ability to suppress IL-1 and TNF-α. Due to the difficulty in switching patients’ diets, an alternative solution to increasing omega-3 levels needs to be developed. The Fat-1 enzyme, an omega-3 desaturase that has the ability to convert omega-6 to omega-3 fatty acids, may be a good target for increasing the omega-3 levels in the body. </p><p>In the first study, we examined whether Fat-1 transgenic mice on a high-fat diet would exhibit lower levels of PTA degeneration following the destabilization of the medial meniscus (DMM). Both male and female Fat-1 and wild-type (WT) littermates were put on either a control diet (10% fat) or an omega-6 rich high-fat diet (60% fat) and underwent DMM surgery. Arthritic changes were examined 12 weeks post-surgery. Fat-1 mice on both the control and high-fat diet showed protection from PTA-related degeneration, while WT mice showed severe arthritic changes. These findings suggest that the omega-6/omega-3 ratio plays an important role in reducing PTA following injury, and demonstrates the potential therapeutic benefit of the Fat-1 enzyme in preventing PTA in both normal and obese patients following acute injury.</p><p>Following this, we needed to establish a translatable delivery mechanism for getting the Fat-1 enzyme, which is not present in mammalian cells, into patients. In the second study, we examined whether anti-inflammatory gene delivery of the Fat-1 enzyme would prevent PTA following DMM surgery. In vitro testing of both lentivirus (LV) and adeno-associated virus (AAV) was completed to confirm functionality and conformation of the Fat-1 enzyme after transduction. Male WT mice were placed on an omega-6 rich high-fat diet (60% fat) and underwent DMM surgery; either local or systemic AAV injections of the Fat-1 enzyme or Luciferase, a vector control, were given immediately following surgery. 12 weeks post-surgery, arthritic changes were assessed. The systemic administration of the Fat-1 enzyme showed protection from synovial inflammation and osteophyte formation, while administration of Luciferase did not confer protection. These findings suggest the utility of gene therapy to deliver the Fat-1 enzyme, which has potential as a therapeutic for injured obese patients for the prevention of PTA.</p> / Dissertation
3

n-3 Polyunsaturated Fatty Acids Suppress Mitochondrial Translocation to the Immunological Synapse and Modulate Calcium Signaling in T Cells

Yog, Rajeshwari 2010 December 1900 (has links)
T helper (Th) cell activation is necessary for the adaptive immune response. Formation of an immunological synapse (IS) between Th cells and antigen-presenting cells is the first step in Th cell activation. In vitro studies indicate that formation of the IS induces cytoskeleton-dependent mitochondrial redistribution to the immediate vicinity of the IS. This redistribution of mitochondria to the IS in T cells is necessary to maintain Ca2 influx across the plasma membrane and Ca2 -dependent Th cell activation. Earlier studies have demonstrated that n-3 polyunsaturated fatty acids (PUFA) suppress the localization and activation of signaling proteins at the IS. Therefore, we hypothesized that n-3 PUFA suppress CD4 T cell mitochondrial translocation during the early stages of IS formation and down-modulate Ca2 dependent Th cell activation. CD4 cells derived from fat-1 mice, a transgenic model that synthesizes n-3 PUFA from n-6 PUFA, were co-cultured with anti-CD3-expressing hybridoma cells (145-2C11) for 15 min at 37 degrees C, and mitochondrial translocation to the IS was assessed by confocal microscopy. fat-1 mice exhibited a significantly (P< 0.05) reduced percentage of CD4 T cells with mitochondria which translocated to the IS; fat-1 (30 percent) versus wild type control (82 percent). With respect to an effect on the mitochondrial-to-cytosolic Ca2 ratio, wild type cells showed significant increases at the IS (71 percent) and total cell (60 percent) within 30 min of IS formation. In contrast, fat-1 CD4 T cells remained at basal levels following the IS formation. A similar blunting of the mitochondrial-to-cytosolic Ca2 ratio was observed in wild type cells co-incubated with inhibitors of the mitochondrial uniporter, RU360 or calcium release-activated Ca2 (CRAC) channels, BTP2. Together, these observations provide evidence that n-3 PUFA modulate Th cell activation by limiting mitochondrial translocation to the IS and reducing Ca2 entry.
4

Résistance des souris transgéniques fat-1 à l'obésité : prévention de l'endotoxémie métabolique et modulation du microbiote intestinal par les acides gras polyinsaturés en n-3

Bidu, Célia 14 December 2015 (has links)
L’obésité est associée à un état inflammatoire chronique de bas grade ainsi qu’à descomplications métaboliques secondaires telles que l’insulino-résistance, l’intolérance au glucose etla stéatose hépatique. La composition bactérienne intestinale semble tenir une place importantedans l’apparition de ces complications. Il a en effet été montré qu’une altération du microbiote parun régime obésogène était associée à une endotoxémie métabolique caractérisée par uneaugmentation des concentrations circulantes de lipopolysaccharides bactériens. Les AGPI enn-3 possèdent des propriétés anti-obésogènes et anti-inflammatoires qui pourraient passer par unemodulation du microbiote intestinal et une prévention de l’endotoxémie métabolique. Nous avonsmontré que des souris transgéniques fat-1, présentant des teneurs tissulaires en AGPI enn-3 élevées, soumises durant 18 semaines à un régime obésogène, étaient résistantes à l’obésité etaux troubles métaboliques associés. Ces animaux présentent un maintien de la fonction barrièreintestinale et une prévention de l’endotoxémie métabolique. De plus, une analyse du microbiotecaecal révèle une augmentation du phylum Akkermansia. Enfin, nous avons montré qu’un transfertde matériel fécal de souris fat-1 à des souris sauvages maintenues sous régime obésogène protègeces dernières du développement d’une obésité et des comorbidités associées. Ainsi, uneaugmentation de la teneur en Akkermansia au niveau intestinal par les AGPI en n-3, peutreprésenter une stratégie intéressante de prévention de l’obésité, ainsi que de l’insulino-résistance,l’intolérance au glucose et la stéatose hépatique qui lui sont associées. / Obesity is associated with chronic low-grade inflammatory state and secondary metabolicdisorders, such as insulin-resistance, glucose intolerance and hepatic steatosis. Gut microbiotaseems to play an important role in these obesity features. Moreover, microbiota dysbiosis has beenshown to be associated with increased systemic lipopolysaccharides levels, called metabolicendotoxemia. N-3 PUFAs are anti-obesity and anti-inflammatory molecules able to modulate gutmicrobiota and prevent metabolic endotoxemia. We showed that fat-1 transgenic mice,endogenously synthetizing n-3 PUFAs, resist to obesity development and comorbidities whensubmitted to diet-induced obesity for 18 weeks. These mice exhibit a maintained intestinal barrierfunction and a prevention of metabolic endotoxemia. Moreover, cecal microbiota analysis revealedan increase of Akkermansia phylum. Microbiota transplantation of fat-1 mice to wild type micewas shown to exert protective effects against diet-induced obesity and associated disorders. Thus,increasing gut microbiota Akkermansia population by appropriate n-3 PUFAs may represent apromising strategy to prevent obesity, insulin-resistance, glucose intolerance and hepatic steatosis.

Page generated in 0.0209 seconds