Spelling suggestions: "subject:"FCC detals"" "subject:"FCC acetals""
1 |
Plasticité des nanoparticules métalliques cubiques à faces centrées / Plasticity of face Centered Cubic Metallic NanoparticlesBel Haj Salah, Selim 19 July 2018 (has links)
Lorsque leurs dimensions deviennent nanométriques, les matériaux présentent généralement des propriétés bien différentes de celles mesurées aux échelles supérieures. Ainsi, concernant les propriétés mécaniques, il est, par exemple, souvent fait état d’une résistance accrue à la déformation plastique. Toutefois, une majorité des travaux dans ce domaine concerne des systèmes à une dimension, tels que les nanofils et les nanopiliers. Nos connaissances des propriétés mécaniques d’un autre type de système ’nano’, à savoir les nanoparticules, restent actuellement limitées, ce qui est surprenant en regard de leur immense champ d’applications.Les travaux ici présentés portent sur les propriétés mécaniques de nanoparticules sphériques de matériaux métalliques de structure cubique à faces centrées (aluminium, nickel, cuivre). Ils ont été conduits à l’aide de simulations de dynamique moléculaire de compression uniaxiale.Ces dernières permettent d’analyser finement les mécanismes de plasticité à l’échelle atomique.Deux axes principaux d’étude ont été retenus : l’influence de la taille des nanoparticules et géométrie de la surface de contact dans la gamme de taille étudiée (4-80 nm) lors des premiers stades de déformation plastique. Nous montrons ainsi que cette dernière influe sur la limite d’élasticité, ainsi que sur le mode de déformation plastique, tel que le maclage. / When characteristic dimensions decrease to nanometer, materials often exhibit different properties than those measured at higher scales. So, in terms of mechanical properties,increased resistance to plastic deformation is often reported. However, most research works in this domain focused on one dimensional systems like nanowires and nanopilars. Our knowledge concerning mechanical properties for another type of ’nano’ system, nanoparticles, are in fact much more limited. This is surprising, since they can be used in immense field of applications.The work presented here deals with the mechanical properties of spherical nanoparticles of face centered cubic metallic materials (aluminium, nickel, copper). They were conducted using molecular dynamics simulations under uniaxial compression. These last ones allow to analyze finely the mechanisms of plasticity at the atomic scale. Two main areas of study were selected :the influence of nanoparticle size and the orientation of the compression axis. Our results highlight the predominant role of contact surface geometry in the size range studied (4-80 nm) during the early stages of plastic deformation. We thus show that the latter influences the yield strength, as well as the plastic deformation mode, such as smearing.
|
2 |
Modeling the Role of Surfaces and Grain Boundaries in Plastic DeformationKuhr, Bryan Richard 15 August 2017 (has links)
In this dissertation, simulation techniques are used to understand the role of surfaces and grain boundaries in the deformation response of metallic materials. This research utilizes atomistic scale modeling to study nanoscale deformation phenomena with time and spatial resolution not available in experimental testing. Molecular dynamics techniques are used to understand plastic deformation of grain boundaries and surfaces in metals under different configurations and loading procedures.
Stress and strain localization phenomena are investigated at plastically deformed boundaries in axially strain thin film samples. Joint experimental and modelling work showed increased stress states at the intersections of slip planes and grain boundaries. This effect, as well as several other differences related to stress and strain localization are thoroughly examined in digital samples with two different grain boundary relaxation states. It is found that localized stress and strain is exacerbated by initial boundary disorder.
Dislocation content in the randomly generated boundaries of these samples was quantified via the dislocation extraction algorithm. Significant numbers of lattice dislocations were present in both deformed and undeformed samples. Trends in dislocation content during straining were identified for individual samples and boundaries but were not consistent across all examples. The various contributions to dislocation content and the implications on material behavior are discussed.
The effects of grain boundary hydrogen on the deformation response of a digital Ni polycrystalline thin film sample is reported. H content is found to change the structure of the boundaries and effect dislocation emission. The presence of dispersed hydrogen caused a slight increase in yield strength, followed by an increase in grain boundary dislocation emission and an increase in grain boundary crack formation and growth.
An atomistic nano indenter is employed to study the nanoscale contact behavior of the indenter-surface interface during nano-indentation. Several indentation simulations are executed with different interatomic potentials and different indenter orientations. A surface structure is identified that forms consistently regardless of these variables. This structure is found to affect several atomic layers of the sample. The implications of this effect on the onset of plasticity are discussed.
Finally, the implementation of an elastic/plastic continuum contact solution for use in mesoscale molecular dynamics simulations of solid spheres is discussed. The contact model improves on previous models for the forces response of colliding spheres by accounting for a plastic regime after the point of yield. The specifics of the model and its implementation are given in detail.
Overall, the dissertation presents insights into basic plastic deformation phenomena using a combination of experiment and theory. Despite the limitations of atomistic techniques, current computational power allows meaningful comparison with experiments. / Ph. D. / Certain engineering metals have a remarkable bend-then-break quality. This allows a metal component to withstand damage without totally failing. The process of permanent distortion is called plastic deformation. Metals, in nearly all practical forms, contain defects. During plastic deformation, defects are generated, moved, changed and annihilated. The rates of these actions govern the mechanical behavior of metals. There are several types of defects and several ways in which they can interact, forming a complex interplay during plastic deformation. The focus of this dissertation is on plastic deformation associated with two particular defect types: surfaces and grain boundaries. Because these defects occur on a very small length scale, the details of their behavior can best be observed via simulation. For this reason, Molecular Dynamics was employed as the primary research tool, and other methods were used for validation. This allows fully 3D rendering of our simulated samples with atom-scale resolution, and complete stress/energy information. In each of the 6 manuscripts presented in this dissertation, new insights into the plastic deformation around surfaces or grain boundaries is presented.
|
3 |
Stored energy maps in deformed metals using spherical nanoindentationVachhani, Shraddha J. 22 May 2014 (has links)
Microstructure changes that occur during the deformation and heat treatments involved in wrought processing of metals are of central importance in achieving the desired properties or performance characteristics in the finished products. However, thorough understanding of the evolution of microstructure during thermo-mechanical processing of metallic materials is largely hampered by lack of methods for characterizing reliably their local (anisotropic) properties at the sub-micron length scales. Recently, remarkable advances in nanoindentation data analysis techniques have been made which now make it possible to obtain quantitative information about the local mechanical properties of constituent individual grains in polycrystalline metallic samples. In this work, a novel approach that combines mechanical property information obtained from spherical nanoindentation with the complementary structure information measured locally at the indentation site, using Electron Backscattered Diffraction (EBSD), is used to systematically investigate the local structure-property relationships in fcc metals. This work is focused on obtaining insights into the changes in local stored energies of polycrystalline metallic samples as a function of their crystal orientation at increasing deformation levels. Furthermore, using the same approach, the evolution of mechanical properties in the grain boundary regions in these samples is studied in order to better understand the role of such interfaces during deformation and recrystallization processes. The findings provide valuable information regarding development of stored energy gradients in polycrystalline materials during macroscopic deformation.
|
4 |
Structural evolution in the dynamic plasticity of FCC metalsLea, Lewis John January 2018 (has links)
Above true strain rates of $10^4$ s$^{-1}$ FCC metals exhibit a rapid increase in strength. Understanding of the physical mechanisms behind this strength transition is hindered by the number and interdependence of candidate mechanisms. Broadly, contributions to strength can be split into `instantaneous' effects and the more permanent `structural' ones. In this thesis a series of experiments are presented which are designed to separate the two types of contribution. Chapter 2 outlines the basics of dislocation plasticity, based on the seminal works of Taylor and Orowan. It then progresses on to discuss recent experimental and theoretical work on the understanding of slip as avalanche behaviour. Chapter 3 summarises traditional modelling approaches for instantaneous strength contributions which are routinely applied below $10^4$ s$^{-1}$. It then continues on to outline a number of different approaches which have been adopted to attempt to explain and model the strength transition. Chapter 4 outlines the methods used in the earliest stages of the study: Instron and split Hopkinson pressure bar methods. Both methods are well established, and cover the majority of the range of rates under study. Emphasis is made on minimising experimental sources of error, and subsequently accounting for those which are unavoidable. Finally, the specimen material is introduced and is shown to be fit for purpose. Chapter 5 presents a set of mechanical tests of specimens at strain rates between $10^4-10^5$~s$^{-1}$. The softening of the specimens with increased temperature is observed to increase with strain rate, both in absolute terms and when normalised to the 300 K measurement for each strain rate. The observations are most easily explained if the strength transition is due to an increase in early stage work hardening, however, some anomalous behaviours remain. Chapter 6 introduces a new experimental technique; direct impact Hopkinson pressure bars, required to perform experiments shown to be necessary by the results of Chapter 5. Photon Doppler velocimetry is applied to the projectiles used in experiments, removing one of the most significant flaws of the technique, and creating a more confident basis with which to perform further experimental work. Chapter 7 presents a series of `jump tests' at ambient temperatures. Specimens are deformed at strain rates ranging from $10^{-2}$ to $10^5$~s$^{-1}$ to a fixed strain of 0.1, then reloaded to yield at a strain rate of $10^{-1}$. The yield point at reload is shown to have the same rapid upturn as seen when the specimens were deforming at high rates, providing strong evidence that the increase in strength is due to changes in the underlying dislocation structure, rather than a dynamic effect, as it remains even when the high strain rate is removed. Chapter 8 continues on from the conclusions of Chapter 7. Jump tests are expanded to a variety of temperatures and strains, to provide a more complete characterisation of metal behaviour. No dramatic change in the saturation of work hardening is observed to coincide with the increase in early stage work hardening. Chapter 9 discusses discrepancies between contemporary high rate models and recent developments in the understanding of plasticity being an avalanche process. Potential consequences of incorporating avalanche plasticity into high rate models are explored. Particular attention is paid to Brown's observation that based on quasi static observations of avalanche behaviour, the formation of dislocation avalanches will begin to fail at strain rates of approximately $10^4$ s$^{-1}$. Consequences of the progressive breakdown of avalanche behaviour are discussed with respect to the experimental observations presented in earlier chapters. In Chapter 10, we will discuss the key conclusions of the work. Finally, a number of avenues are proposed for building upon the current work both theoretically and experimentally.
|
5 |
A Hybrid Bishop-Hill Model for Microstructure Sensitive DesignTakahashi, Ribeka 08 November 2012 (has links) (PDF)
A method is presented for adapting the classical Bishop-Hill model to the requirements of elastic/yield-limited design in metals of arbitrary crystallographic texture. The proposed Hybrid Bishop-Hill (HBH) model, which will be applied to ductile FCC metals, retains the `stress corners' of the polyhedral Bishop-Hill yield surface. However, it replaces the `maximum work criterion' with a criterion that minimizes the Euclidean distance between the applicable local corner stress state and the macroscopic stress state. This compromise leads to a model that is much more accessible to yield-limited design problems. Demonstration of performance for the HBH model is presented for an extensive database for oxygen free electronic (OFE) copper. The study also implements the HBH model to the polycrystalline yield surface via standard finite element analysis (FEA) tools to carry out microstructure-sensitive design. Anisotropic elastic properties are incorporated into the FEA software, as defined by the sample texture. The derived local stress tensor is assessed using the HBH approach to determine a safety factor relating to the distance from the yield surface, and thereby highlighting vulnerable spots in the component and obtaining a quantitative ranking for suitability of the given design. By following standard inverse design techniques, an ideal microstructure (meaning texture in this context) may be arrived at. The design problems considered is a hole-in-plate configuration of sheets loaded in uniaxial tension and simple compliant mechanisms. The further improvement of HBH model is discussed by introducing geometrically necessary dislocation (GND) densities in addition to the crystal orientations procedure in standard microstructure-based method. The correlations between crystal orientations and GND densities are studied. The shape of the yield surface most influenced by the texture of the material, while the volume of the envelope scales in accordance with the GND density. However, correlations between crystal orientation and GND content modify the yield surface shape and size. While correlations between GND density and crystal orientation are not strong for most copper samples, there are sufficient dependencies to demonstrate the benefits of the detailed four-parameter model. The four-parameter approach has potential for improving estimates of elastic-yield limit in all polycrystalline FCC materials.
|
6 |
Role Of Stacking Fault Energy On Texture Evolution In Micro- And Nano-Crystalline Nickel-Cobalt AlloysRadhakrishnan, Madhavan 12 1900 (has links) (PDF)
Plastic deformation of metals and alloys are invariably accompanied by the development of texture. The origin of texture is attributed to the deformation micro-mechanisms associated with processing. The face-centered cubic (FCC) metals and alloys are known to exhibit two distinct types of textures when subjected to large strain rolling deformation, namely, (i) Cu-type texture, commonly seen in high/medium stacking fault energy (SFE) materials, (ii) Bs-type texture in low SFE materials. The circumstances that could result in the formation of Bs-type texture in low SFE materials still remains an open question and no definite mechanism has been uniquely agreed upon.
Apart from the SFE, grain size could also influence the deformation mechanism and hence the deformation texture. It is well known that in materials with grain sizes less than 100 nm (referred to as nano-crystalline materials), the microstructures contain large fraction of grain boundaries. This subsequently introduces a variety of deformation mechanisms in the microstructure involving grain boundary-mediated processes such as grain boundary sliding and grain rotation, in addition to slip and twinning. A clear understanding of texture evolution in nano-crystalline materials, particularly at large strains, is a topic that remains largely unexplored.
The present work is an attempt to address the aforementioned issues pertaining to the evolution of deformation texture, namely, (i) the effect of SFE and (ii) the effect of grain size, in FCC metals and alloys. Nickel-cobalt alloys are chosen as the model system for the present investigation. The addition of cobalt to nickel leads to a systematic reduction of SFE as a function of cobalt content. In this thesis, three alloys of Ni-Co system have been considered, namely, nickel – 20 wt.% cobalt, nickel – 40 wt.% cobalt and nickel – 60 wt.% cobalt. For a comparison, pure nickel has also been subjected to similar study.
Chapter 1 of the thesis presents a detailed survey of literature pertaining to the evolution of rolling textures in FCC metals and alloys, and chapter 2 includes the details of the experimental techniques and characterization procedures, which are commonly employed for the entire work.
Chapter 3 addresses the effect of stacking fault energy on the evolution of rolling texture. The materials subjected to study in this chapter are microcrystalline Ni-Co alloys. The texture evolution in Ni-20Co is very similar to pure Ni, and a characteristic Cu-type rolling texture is observed. The evolution of texture in these materials is primarily attributed to the intense dislocation activity throughout the deformation stages. In Ni-40Co, a medium SFE material, the rolling texture was predominantly Cu-type up to a strain of ε = 3 (95% thickness reduction). However, beyond this strain level, namely at ε = 4 (98%), the texture gets transformed to Bs-type with orientations maxima predominantly close to Goss ({110} <001>) position. Simultaneously, the Cu component which was dominant until 95% reduction has completely disappeared. The analysis of microstructures indicate that deformation is mostly accommodated by dislocation slip up to 95%, however, at ε > 3, Cu-type shear bands get initiated, preferably in the Cu-oriented ({112} <111>) grains. The sub-grains within the shear bands show preferred orientation towards Goss, which indicates that the Cu component should have undergone transformation and resulted in high fraction of Goss component. In Ni-60Co alloy, Bs-type texture forms in the early stages of deformation (ε ~ 0.5) itself and further deformation results in strengthening of the texture with an important difference that the maximum in orientation distribution has been observed at a location close to Goss component, rather than at exact Bs-location. The development of Bs-type texture is accompanied by the complete absence of Cu and S components. Extensive EBSD analyses show that the deformation twinning gets initiated beyond 10% reduction and was found extensively in most of the grains up to 50% reduction. At higher strains, tendency for twinning ceases and extensive shear banding is observed. A non-random distribution of orientations close to Goss orientation was found within the shear bands. The near-Goss component in the Ni-60Co alloy can be explained on the basis of deformation twinning and shear banding. Thus, a reasonable understanding of the deformation texture transition in the extreme SFE range has been developed.
In chapter 4, the effect of fine grain size on the evolution of rolling texture has been addressed. Nanocrystalline (nc) nickel-cobalt alloys with a mean grain size of ~20 nm have been prepared by pulse electro-deposition method. For a comparison, nc Nickel (without cobalt) with similar grain size has also been deposited. For all the materials, a weakening of the initial fiber texture is observed in the early stage of room temperature rolling (ε ~ 0.22). A combination of equiaxed grain microstructure and texture weakening suggests grain boundary sliding as an operative mechanism in the early stage of rolling. At large strain (ε = 1.2), Ni-20Co develops a Cu-type texture with high fractions of S and Cu components, similar to pure Ni. The texture evolution in Ni-40Co and Ni-60Co alloys is more towards Bs-type. However, the texture maximum occurs at a location 10° away from the Goss. The evolution of Cu and S components in nc Ni-60Co alloy takes place simultaneously along with the α-fiber components during rolling. Microstructural investigation by TEM indicates deformation twinning to be more active in all the materials up to 40% reduction. However, no correlation could be drawn between the texture evolution and the density of twins. The deformation of nc Ni-20Co alloy, is also accompanied by significant grain growth at all the stages of rolling. The increase in grain size, subsequently, renders the texture to be of Cu-type. However, Ni-40Co and Ni-60Co alloys show high grain stability. The absence of strain heterogeneities such as shear bands, and the lack of significant fraction of deformation twins indicate that the observed Bs-type texture could be due to planar slip. The increase in deformation beyond 70% reduction caused a modest reduction in the intensity of deformation texture. The microstructural observation indicates the occurrence of restoration mechanisms such as recovery/ recrystallization at large strains.
The overall findings of the investigation have been summarized in chapter 5. The deformation mechanism maps relating stacking fault energy with amount of strain and with grain size are proposed for micro- and nano- crystalline materials respectively.
|
Page generated in 0.041 seconds