• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incremental Redundancy Low-Density Parity-Check Codes for Hybrid FEC/ARQ Schemes

Hur, Woonhaing 23 January 2007 (has links)
The objective of this dissertation is to investigate incremental redundancy low-density parity-check (IR-LDPC) codes for hybrid forward error correction / automatic repeat request (HybridARQ) schemes. Powerful capacity-approaching IR-LDPC codes are one of the key functional elements in high-throughput HybridARQ schemes and provide a flexible rate-compatible structure, which is necessary for low-complexity HybridARQ schemes. This dissertation first studies the design and performance evaluation of IR-LDPC codes, which have good error rate performance at short block lengths. The subset codes of the IR-LDPC codes are compared to conventional random punctured codes and multiple dedicated codes. As a system model for this work, an adaptive LDPC coded system is presented. This adaptive system can confront the nature of time-varying channels and approach the capacity of the system with the aid of LDPC codes. This system shows remarkable throughput improvement over a conventional punctured system and, for systems that use multiple dedicated codes, provides comparable performance with low-complexity at every target error rate. This dissertation also focuses on IR-LDPC codes with a wider operating code range because the previous IR-LDPC codes exhibited performance limitation related to the maximum achievable code rate. For this reason, this research proposes a new way to increase the maximum code rate of the IR-LDPC codes, which provides throughput improvement at high throughput regions over conventional random punctured codes. Also presented is an adaptive code selection algorithm using threshold parameters. This algorithm reduces the number of the unnecessary traffic channels in HybridARQ schemes. This dissertation also examines how to improve throughput performance in HybridARQ schemes with low-complexity by exploiting irregular repeat accumulate (IRA) codes. The proposed adaptive transmission method with adaptive puncturing patterns of IRA codes shows higher throughput performance in all of operating code ranges than does any other single mode in HybridARQ schemes.

Page generated in 0.0681 seconds