• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The FIIND Domain of Nlrp1b Promotes Oligomerization and Pro-caspase-1 Activation in Response to Lethal Toxin of Bacillus anthracis

Joag, Vineet 29 November 2012 (has links)
Lethal toxin (LeTx) of Bacillus anthracis kills murine macrophages in a caspase-1 and Nod-like-receptor-protein 1b (Nlrp1b)-dependent manner. Nlrp1b detects intoxication, and self-associates to form a macromolecular complex called the inflammasome, which activates the pro-caspase-1 zymogen. I heterologously reconstituted the Nlrp1b inflammasome in human fibroblasts to characterize the role of the FIIND domain of Nlrp1b in pro-caspase-1 activation. Amino-terminal truncation analysis of Nlrp1b revealed that Nlrp1b1100-1233, containing the CARD domain and amino-terminal 42 amino acids within the FIIND domain was the minimal region that self-associated and activated pro-caspase-1. Residues 1100EIKLQIK1106 within the FIIND domain were critical for self-association and pro-caspase-1 activation potential of Nlrp1b1100-1233, but not for binding to pro-caspase-1. Furthermore, residues 1100EIKLQIK1106 were critical for cell death and pro-caspase-1 activation potential of full-length Nlrp1b upon intoxication. These data suggest that after Nlrp1b senses intoxication, the FIIND domain promotes self-association of Nlrp1b, which activates pro-caspase-1 zymogen due to induced pro-caspase-1 proximity.
2

The FIIND Domain of Nlrp1b Promotes Oligomerization and Pro-caspase-1 Activation in Response to Lethal Toxin of Bacillus anthracis

Joag, Vineet 29 November 2012 (has links)
Lethal toxin (LeTx) of Bacillus anthracis kills murine macrophages in a caspase-1 and Nod-like-receptor-protein 1b (Nlrp1b)-dependent manner. Nlrp1b detects intoxication, and self-associates to form a macromolecular complex called the inflammasome, which activates the pro-caspase-1 zymogen. I heterologously reconstituted the Nlrp1b inflammasome in human fibroblasts to characterize the role of the FIIND domain of Nlrp1b in pro-caspase-1 activation. Amino-terminal truncation analysis of Nlrp1b revealed that Nlrp1b1100-1233, containing the CARD domain and amino-terminal 42 amino acids within the FIIND domain was the minimal region that self-associated and activated pro-caspase-1. Residues 1100EIKLQIK1106 within the FIIND domain were critical for self-association and pro-caspase-1 activation potential of Nlrp1b1100-1233, but not for binding to pro-caspase-1. Furthermore, residues 1100EIKLQIK1106 were critical for cell death and pro-caspase-1 activation potential of full-length Nlrp1b upon intoxication. These data suggest that after Nlrp1b senses intoxication, the FIIND domain promotes self-association of Nlrp1b, which activates pro-caspase-1 zymogen due to induced pro-caspase-1 proximity.

Page generated in 0.0415 seconds