• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 369
  • 9
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 408
  • 131
  • 126
  • 80
  • 66
  • 58
  • 40
  • 33
  • 33
  • 32
  • 32
  • 30
  • 30
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Salinity simulation in Florida Bay with the Regional Oceanic Modeling System (ROMS)

Unknown Date (has links)
Understanding and resolving the water quality problems that Florida Bay has endured requires an understanding of its salinity drivers. Because salinity is the prime factor that drives estuarine ecosystem, Florida Bay’s ecosystem health depends on the correct salinity balance of the Bay. In this thesis, the Regional Oceanic Modeling System - a hydrodynamic prognostic model -was implemented on Florida Bay and it was tailored for shallow waters. Results show that the model captures most of the salinity spatial and temporal variability of Florida Bay. Furthermore, it establishes the role of the major drivers like evaporation, precipitation, and runoff on Florida Bay’s salinity. The model resolves region specific salinity drivers in all four areas of Florida Bay characterized by their own salinity regimes. The model was also able to reveal the impact of surface runoff on salinity in the later part of the year when evaporation increases. A new technique was developed to estimate the discharge and salinity of unmonitored small creeks north of Florida Bay. Those data were estimated from the relationship between net freshwater flux, runoff, and salinity. Model results revealed the importance of accounting for these small creeks to accurately simulate Florida Bay’s salinity. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
182

Investigating biogenic gas dynamics from peat soils of the Everglades using hydrogeophysical methods

Unknown Date (has links)
Peat soils are known to be a significant emitter of atmospheric greenhouse gasses. However, the spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Florida Everglades, as the majority of studies on gas dynamics in peatlands focus on northern peatlands. The purpose of the work outlined here is focused on understanding the spatial and temporal variability in biogenic gas dynamics (i.e. production and release of methane and carbon dioxide) by implementing various experiments in the Florida Everglades at different scales of measurement, using noninvasive hydrogeophysical methods. Non-invasive methods include ground-penetrating radar (GPR), gas traps, time-lapse cameras, and hydrostatic pressure head measurements, that were constrained with direct measurements on soil cores like porosity, and gas composition using gas chromatography. By utilizing the measurements of in-situ gas volumes, we are able to estimate gas production using a mass balance approach, explore spatial and temporal variabilities of gas dynamics, and better constrain gas ebullition models. A better understanding of the spatial and temporal variability in gas production and release in peat soils from the Everglades has implications regarding the role of subtropical wetlands in the global carbon cycle, and can help providing better production and flux estimates to help global climate researchers improve their predictions and models for climate change. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
183

Wading Bird Foraging and Prey Concentration in the Ridge and Slough Landscape of the Everglades

Unknown Date (has links)
The hydrological and topographical variation of wetlands can affect the behavior, population growth, and local densities of aquatic species, which in turn can drive the behavior and density dynamics of gleaning predators. Prey availability, primarily determined by prey density and water depth in wetlands, is an important limiting factor for nesting wading bird populations, top predators in the south Florida Everglades. The Everglades is able to support large colonies of nesting wading birds because of the microtopographic variation in the landscape. Some types of prey concentrate in flat, shallow sloughs or become trapped in isolated pools as they move down from higher elevation ridges with receding water levels. Manipulations to the hydrology and landscape of the Everglades has negatively impacted nesting wading bird populations in the past, and may continue to be detrimental by allowing flat, shallow sloughs to be intersected by deep canals, a potential refuge for wading bird prey. In addition, the subtle elevation differences between the ridge and slough landscape may be an important mechanism for increasing slough crayfish (Procambarus fallax) prey availability for the most abundant and seemingly depth-sensitive Everglades wading bird, the White Ibis (Eudocimus albus). I implemented a 2-year experimental study in four replicated manmade wetlands with controlled water recession rates in order to determine the effects of proximate deep water (akin to canals) on fish prey concentrations in the sloughs, as water levels receded similarly to a natural Everglades dry season. I also calculated average daily wading bird densities with game cameras (Reconyx PC800 Hyperfire) using timelapse imagery over 60 days to determine when and where wading birds responded to changing prey concentrations. I completed an additional observational study on White Ibis and slough crayfish prey from the first year of data (2017). Crayfish make up the majority of the diet for nesting White Ibis, and literature has suggested crayfish are most abundant at slough depths much deeper than previously proposed foraging depth limitations for White Ibis. This study specifically compared recent determinations about crayfish movement dynamics in the ridge and slough system with White Ibis foraging behavior and depth limits. Results from the first experimental study suggest that canals might be an attractive refuge for relatively large prey fishes (> 3 cm SL) in sloughs, but it is uncertain if the fencing blocked all prey fish movement. The second observational study determined White Ibis foraging activity was primarily driven by a down-gradient crayfish flux from ridge to slough, with the majority of foraging activity occurring at much deeper slough depths than previously suggested water depth limitations for White Ibis. Results from both of these studies support the importance of preserving the ridgeslough landscape of the Everglades to sustain high prey availability for wading birds. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
184

The cascading impacts of vegetation on peat soil properties and crayfish survival in the Florida everglades

Unknown Date (has links)
Changes in vegetation may influence the quality and quantity of the underlying organic peat soils and have impacts on faunal populations. My goal was to determine whether shifts from native slough communities to invasive cattail in the Florida Everglades could affect peat characteristics that could cascade to impact the dry season survival of crayfish (Procambarus fallax). I contrasted peat soils from native slough and cattail-invaded sites as alternative dry-season burrowing substrates for crayfish. Cattail peat had higher average bulk density and inorganic content within the first ten centimeters of the soil profile. Crayfish showed marginally greater initial burrowing success in slough peat than in cattail peat but survival was equivalent in both peat soils and high overall. Understanding these indirect linkages between vegetation and crayfish populations in the Everglades can provide insight on the consequences of plant invasion on ecosystem trophic dynamics. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
185

Examining the Relationships Between Neighborhood Socioeconomic Status and Drinking Water Quality: Identifying Inequities in Palm Beach County, Florida

Unknown Date (has links)
Water treatment facilities across the United States are known for providing high-quality drinking water to their residents. However, differences in treatment methods, aging infrastructure, and outdated household plumbing may affect the quality of drinking water by the time it reaches the consumer’s tap. Palm Beach County, Florida, is an area with large socioeconomic contrasts where some families live in dilapidated structures and others reside in luxurious, gated communities. This research highlights the variation of household water quality by determining metal concentrations in tap water samples in communities of different socioeconomic status. In addition, interviews were conducted with personnel from five different Water Treatment Plants (WTPs) in the study area to understand the relationship between customers and their water utility. Results indicate that effective communication strategies are needed to boost public trust and fill critical information gaps about the water treatment process. Ninety-six tap water samples were collected from households throughout eastern Palm Beach County and analyzed for different metals using Inductively Coupled Plasma Optical Emission Spectrometry. Surveys were also administered at the same households where tap water samples were collected. Residents were asked about their perceptions of tap water and social and economic questions regarding their household characteristics. A Socioeconomic Status (SES) index was created using Principal Components Analysis (PCA) to understand how perceptions of tap water quality and concentrations of metals in household tap water vary based on SES. Results provide evidence that those living in the lowest-ranking SES neighborhoods are the least satisfied with their tap water quality and consume less tap water than those living in higher SES neighborhoods. Water quality results highlighted large variations in concentrations of aluminum (Al) and thus, analyses focused specifically on how Al concentrations varied according to SES. Results from Ordinary Least Squares regression show that as socioeconomic status decreases, the concentration of Al in tap water increases. Six samples exceed the State of Florida’s Secondary Maximum Contaminant Level (SMCL) for Al, and five of those samples were found in the lowest-ranking SES neighborhoods (SES 1 and 2). The results of this research provide evidence that inequities in household water quality exist across eastern Palm Beach County, Florida. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
186

EVALUATION OF LOCAL OFFSHORE SEDIMENTS FOR COASTAL RESTORATION PROJECTS IN PALM BEACH COUNTY, FL, USA

Unknown Date (has links)
Open-coast beach-dune environments are vulnerable to erosion, such as from storms or interruption of littoral drift. Although protected from event-driven wave energy, backbarrier shorelines are also susceptible to erosion, due to tidal currents and boat wakes. A common response to mitigate erosion is to place sediment and restore the environment. For placement on beaches, a significant effort has been made to identify offshore resources available; however, offshore resources have seldom been considered for dune or backbarrier shoreline restoration. This study evaluates the geotechnical sediment properties of offshore sediments in proven borrow areas for beach nourishment and reclassifies them for placement in dunes and along the backbarrier in Palm Beach County, Florida. Two different methods calculate volume of offshore resources available for dune or backbarrier projects, including numerical calculations and interpolation of volume through SURFER. Because existing proven borrow areas are delineated for beach nourishment, less volume of sediment available in these areas for other coastal environments. The results of this study suggest that identifying offshore sediment sources for lower-energy environments would not adversely impact sediment needed for beach nourishment. As coastal environments are increasingly threatened by climate change and sea level rise, sediment resources become scarcer, the need to efficiently and effectively use sediments will be of utmost importance for scientists, engineers, and managers in their efforts to protect coastal habitat and communities. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
187

Characterization of Elasmobranch Community Dynamics in the Indian River Lagoon

Unknown Date (has links)
Florida’s Indian River Lagoon (IRL) has experienced myriad anthropogenic impacts and knowledge on elasmobranchs (sharks and rays) in the southern IRL is lacking. A fishery independent survey (longline/gillnet) was implemented to 1) assess the effects of bait type [striped mullet (Mugil cephalus) versus Atlantic mackerel (Scomber scombrus)] and mesh size (15.2 cm versus 20.3 cm stretch mesh) on elasmobranch species composition, catch-per-unit effort, and size distributions and 2) characterize elasmobranch abundance and distribution. From 2016 - 2018, 630 individuals (16 species) were captured, more often in the gillnet than the longline. Catch-per-unit-effort was significantly higher with mullet than mackerel. Species composition differed among gears. Although dependent on gear, there was evidence of seasonal and spatial patterns in abundance and species composition. This study provides the first baseline abundance indices for many elasmobranchs in the IRL and develops the capacity to understand how elasmobranchs may respond to changes in this highly modified estuary. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
188

Habitat Use by Bottlenose Dolphins in the Indian River Lagoon

Unknown Date (has links)
The objective of this research was to examine bottlenose dolphin (Tursiops truncatus) habitat use in the Indian River Lagoon (IRL) based on monthly relocation of photo-identified individuals, prey availability and environmental factors from 2003-2015. We focused on the variation of spatial and temporal abiotic and biotic factors and their influence on bottlenose dolphin habitat use patterns. Harbor Branch Oceanographic Institute (HBOI) conducted monthly photo-identification surveys along the length of the IRL and GPS locations of photographed dolphins were collected at the time of surveying. Stratified random samples of prey and environmental variables were collected monthly by the Florida Fish and Wildlife Conservation Commission (FWC) as part of the Fisheries-Independent Monitoring (FIM) program. Kernel density estimation was used to determine the magnitude-per-unit area of dolphins across a continuous raster surface of the IRL by wet and dry seasons each year, the values of which were used as a response variable in Classification and regression tree (CART) analyses with FIM fish community and environmental factors as predictors. Understanding how dolphins respond to environmental factors over time in the IRL could be used to predict future responses in estuaries and prioritize conservation and restoration actions. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
189

Characterization of Internal Wave Activity in the Straits of Florida

Unknown Date (has links)
The Gulf Stream current in the Straits is typically dominated by a strong northerly current, associated shear, and eddies. The water column also includes a prominent thermocline and periodically features internal waves centered on the upper or lower edges of the thermocline. Despite numerous previous related studies, there is limited available field data on internal waves in the Straits of Florida. Here, study and analysis of velocity, temperature and conductivity data acquired in the Straits over a period of time are described, in support of identifying presence of internal waves in the flow. A systematic procedure is employed in modifying the universal Garrett- Munk spectrum for internal waves in the open ocean for application to flow in the Straits of Florida. Using this process, identified internal waves are characterized and related velocity fluctuations in the time series are isolated to facilitate consideration of their correlations with simultaneously observed magnetic fields. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
190

Equipping a selected group of members at the Coastal Community Church, Port Saint John, Florida, in small group leadership skills

Brookins, Erick Vann, January 1900 (has links)
Project (D. Min.)--New Orleans Baptist Theological Seminary, 2008. / Abstract and vita. Includes final project proposal. Includes bibliographical references (leaves 148-155, 52-57).

Page generated in 0.5014 seconds