• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 17
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 102
  • 31
  • 14
  • 13
  • 11
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Transverse transport of suspended sediment across the main channel – floodplain shear boundary

Denys, Frank 12 1900 (has links)
Thesis (MScEng (Civil Engineering))--University of Stellenbosch, 2006. / The floodplain of a river forms a close relationship with the stream that created it. Not only does the river influence the characteristics of the floodplain, the floodplain can also very easily influence its river, as is evidenced by examples such as the Huang He River in China and the Columbia River in Canada. These two cases clearly indicate that suspended sediment has a pronounced influence on the floodplain. This thesis investigates the processes which cause sediment to move onto the floodplain. As observed in many rivers worldwide suspended sediment on the floodplain has a tendency to settle near but not directly next to the main river channel. This gap between the river channel and the location of highest sedimentation rate stems from the fact that there is a zone of relatively higher turbulence at the boundaries of the floodplain. Close to this zone flow on the floodplain is increased in velocity whilst the flow velocity in the main channel is decreased as can be seen in the figure below: ...
42

Potential for water yield improvement in Arizona through riparian vegetation management

Affleck, Richard Steven,1942- January 1975 (has links)
New knowledge gained over the past 15 to 20 years on the management of riparian zones in Arizona for water yield improvement has been organized and analyzed. Hydrologic processes and principles applicable to riparian zones, the distribution and nature of riparian vegetation in Arizona, and new resource management methods, needs, and constraints have been evaluated, The relationship between vegetation management for water yield improvement and other resource based products and uses of riparian zones such as timber, range for livestock, wildlife and fish, recreation, and aesthetics was also assessed. Past studies and surveys indicate that Arizona has approximately 280,000 to 320,000 acres of riparian vegetation, However, pertinent information such as species composition, vegetation density, depth to groundwater, groundwater quality, and landownership have not been mapped accurately for many riparian zones in Arizona, A continuous survey of riparian vegetation cover by remote sensing supplemented by ground truth is suggested to remedy this situation. Analysis of hydrologic studies indicated the following identifiable trends in water use by riparian species, Saltcedar, arrowweed, cottonwood, and hydrophytes are the heaviest users of water (between four and eight feet of water annually). Intermediate water users (annual use between two and five feet) are seepwillow, mesquite, quailbrush, four-wing saltbush, and greasewood. Lesser amounts of water are transpired by grasses and sedges and evaporated from bare soil (0,5 to three feet annually). Five water yield improvement methods applicable to riparian zones are evaluated; conversion of one vegetation type to another, channelization, cottonwood thinning, antitranspirant and biological control treatments. Conversion treatments to grasses or crops may yield water savings of up to 2,5 acre-feet per acre annually during the first year, However, some or all of this water may eventually be used by replacement vegetation, Several constraints including possible loss of wildlife habitat, contamination of water supplies by chemical herbicides, lowered aesthetic quality, and increased soil erosion with the removal of riparian vegetation reduce the opportunities for converting a large percentage of riparian vegetation in Arizona, To justify operational conversion programs in Arizona follow up studies of current conversion projects should be instituted, Rates at which revegetation takes place, declines in water salvage as revegetation occurs, amount and value of increased herbage production, and long term effects on plant distribution and animal life need to be determined. Channelization projects in the Southwest have been credited with increasing water yields; however, methods for determining these increases are poorly documented. Channelization for flood control purposes is limited because flow of flood water is accelerated in the vicinity of the excavation and may contribute to flooding and sedimentation on unchanneled segments. Cottonwood thinning designed to reduce evapotranspiration and flood hazards has been conducted along the Verde River, Increased water yields have not been measured, Adverse effects on fish and wildlife have been reported as a result of thinning cottonwoods. Limited thinning of cottonwoods to prevent bridges from washing out or to protect existing structures on the floodplain may be beneficial. Application of antitranspirant foliar sprays to reduce plant water use is a potential treatment method for increasing water yield in riparian zones. Antitranspirants were effective in reducing transpiration rates of saltcedar plants by up to 38 per cent for three to five weeks in greenhouse and limited field studies, Research on the feasibility of obtaining supplementary water from riparian vegetation through the application of antitranspirants should be expanded, Antitranspirants, if proven safe and effective, may be mutually acceptable to water, recreation, and wildlife interests. Biological control of saltcedar is not effective at present.
43

Proposed regulations for land use control in riverine flood hazard areas in Manhattan, Kansas

Glover, Kenneth Frederick. January 1973 (has links)
Call number: LD2668 .P7 1973 G56
44

Depositional slope surface of the western margin of the Nylsvlei, South Africa : active piedmont aggradation and sedimentation processes.

Burri, Nicole M. 03 March 2014 (has links)
The Nyl River and its floodplain are situated on the eastern foothills of the Waterberg mountain range in the Limpopo Province of South Africa. Tributaries flowing out of the Waterberg range display unusual downstream changes, as they approach and converge with the Nylsvlei (or Nyl floodplain). Tributary channels decrease in size downstream until, eventually, they disappear altogether forming unchannellized floodouts. On one such floodout, on the farm Driefontein, an actively aggrading piedmont has formed adjacent to the famous Wonderkrater peat mound, known for its pollen record dating back ~45,000 years. Sediments from the aggrading piedmont interlace with Wonderkrater’s peat layers, suggesting that as the piedmont aggrades so too does the peat mound. This setting presents a unique opportunity to study active aggradational processes, and their products, on hillslope deposits and floodout environments. This study aims to describe the geomorphology and nature of depositional processes along the length of the piedmont adjacent to the Wonderkrater peat mound. Cross-sections, drainage channels and vegetation indices based on topographic maps, orthophotographs and hyperspectral images, were created using ArcGIS in order to describe and determine the surface morphology and hydrology of the Driefontein piedmont in detail. Surface soil samples were collected in order to determine particle size distribution, which were in turn compared to vegetation indices and changes in slope elevation. Further grain samples were collected from depth for age dating using Optically Stimulated Luminescence (OSL), as well as to determine grain size distribution in relation to surface sediments and other fluvial environments. Hyperspectral indices were found to correlate to surface grain size distribution, demonstrating that the presence of vegetation acts as a retaining mechanism for particles along hillslopes where incline should be too steep to support fine-grained sedimentary material. Surface sediments were found to demonstrate the characteristics of an alluvial floodout system, affected greatly by the presence of vegetation and slope inclination. Sub-surface samples were characteristic of a colluvial setting, suggesting that pediment retreat and basin fill, coupled with evidential climatic changes, were dominant controls on the pediment’s morphological and aggradational mechanisms. OSL age results estimated the sediments to be between 37.33 and 58.66 ka old. As a result of its unique sedimentary characteristics, a new type of ‘slow creep fan’ class was established in order to describe the characteristics of the Driefontein piedmont.
45

The Effect of Floodplain Creation on Soil Biogeochemistry in Agricultural Channels

Celena A. Alford (5930513) 03 January 2019 (has links)
In the agricultural Midwest, subsurface drainage allows excess water to drain into agricultural channels, which flows into rivers and streams transporting excess nutrients downstream. The construction of an inset floodplain within agricultural channels enhances sedimentation of particulate nutrients and sediment, provides stable conditions for vegetation to establish, increases rates of microbial activity, and promotes denitrification. Sediments were collected from floodplains of two-stage channels and naturally forming floodplain benches in conventional channels to determine the effect of floodplain creation on carbon and nitrogen cycling. Denitrification rates were seasonally measured across the floodplain width using an unamended acetylene inhibition technique (DNFAIT). Composite respiration and denitrification rates were measured through sacrificial microcosms utilizing membrane inlet mass spectrometry (DNFMIMS). While the two-stage reach showed a significant increase in soil organic matter (two-way ANOVA, p < 0.001) and respiration rates (two-way ANOVA, p = 0.039), there was no effect on DNFMIMS rates (two-way ANOVA, p > 0.05). DNFAIT rates at the two-stage reach only showed an increase at locations closest to the channel (two-way ANOVA, p = 0.008). Nutrient processing rates were most dependent on local environmental conditions, particularly organic matter and sediment grain size. This suggests that site-specific conditions may dictate the impact of floodplain creation on water quality. However, because of the increase in biologically active surface area, the net effect on water quality is likely greater for the two-stage channels.
46

Floodplains as dynamic mosaics : sediment and nutrient patches in a large lowland riverine landscape

Southwell, Mark, n/a January 2008 (has links)
Rivers around the world are under increasing pressure from a variety of human activities. Effective management of riverine landscapes requires an ecosystem approach and one that recognises the complex interactions between their physical, chemical and biological components. Perceptions of pattern and process are central to our understanding of riverine landscapes. Pattern and process operate over multiple scales to produce heterogeneous mosaics of landscape patches that change over time. Hierarchical patch dynamics provides a useful approach to unravel pattern and process at multiple scales in riverine landscapes. This thesis adopts a hierarchical patch dynamics approach to investigate floodplain sediment and nutrient dynamics within the Barwon-Darling River in South Eastern Australia. The flow regime of the Barwon-Darling River is highly variable. As a result, it has a complex channel cross section featuring inset-floodplain surfaces that occur at multiple elevations within the channel trough. These surfaces formed the focus of this study. The texture of inset- floodplain surface sediments displays a patchy spatial distribution and one that did not reflect lateral or longitudinal gradients within this floodplain landscape. Rather a sediment textural patch mosaic was identified. Nutrient concentrations associated with the surface sediments of the inset-floodplains were also shown to vary significantly resulting in a nutrient patch mosaic. This spatial nutrient mosaic was enhanced by factors including the surface elevation of the floodplain surface. Sediment and nutrient exchange between the river channel and inset-floodplain surfaces was measured during several flows in 2001, 2002 and 2005. Pin and sediment trap data showed that significant quantities of sediment were exchanged between the river channel and floodplain surfaces during inundation with both cut and fill processes occurring. Patterns in sediment exchange appear to be related to local sediment supply and seasonal sediment exhaustion, rather than the top down geomorphic constraints considered. These material exchanges resulted in a change to the spatial configuration of the sediment textural patch mosaic. Distinct new sediment textural patches were created following inundation, while other patches were lost post inundation and other patches changed sediment textural character to move into pre-existing patches. Thus a truly dynamic sediment textural mosaic exists within this floodplain landscape. Nutrient concentrations associated with floodplain sediments also changed over time. While nutrient concentrations increased after the December 2001 flow event, they generally decreased after the March 2002 event, highlighting their dynamic nature over time. The spatial distribution of nutrient concentrations also varied over time, with a 40 percent change to the nutrient mosaic as a result of the March 2002 flow event. In addition to the influence of the changing physical template (sediment texture mosaic), nutrient concentrations were shown to be influenced by rainfall processes on non flooded surfaces, and also a number of top-down constraints and bottom-up influences operating over multiple spatial scales. Overall, the inset-floodplains studied in this thesis acted primarily as sediment and nutrient sinks, and were a source for dissolved nutrients. Nutrient exchange was associated with the exchange of sediments in this riverine landscape, over both inter-flow and decadal timescales. It was demonstrated that water resource development within the catchment reduced the number, magnitude and duration of flow events down the Barwon-Darling River and as a result reductions in the exchange of sediment, associated and dissolved nutrients between inset-floodplains and the main river channel were calculated. The greatest reductions were with the release of dissolved nutrients (42-25 percent) and the exchange of sediment and associated nutrients from high level surfaces (43 percent). Effective conservation and management of riverine ecosystems must occur at the correct scale. This study identified potential nutrient hotspots at several scales in the Barwon-Darling floodplain landscape that could be targeted by management. The low predictability of the location of nutrient hotspots at the inset-floodplain scale over time means that environmental flows should be targeted at high level surfaces (<25 000 MLD-1) that provide long term sources of carbon to the river channel. Conserving flows of this magnitude will also reinstate flow variability, an important facet of the Barwon-Darling River?s hydrology that has been changed by water resource development. The research presented in this thesis highlights the importance of not only considering pattern and process at multiple scales, but also the way in which these processes influence landscape patterns over time, leading to the identification of the appropriate scales that can best be targeted for the conservation of these systems.
47

The landscape-scale structure and functioning of floodplains

Sims, Neil C, n/a January 2004 (has links)
Floodplains are amongst the most productive and biodiverse ecosystems. The structure and functioning of floodplains is controlled by the interaction of intermittent inundation with the floodplain landscape. These interactions create highly complex and dynamic ecosystems that are difficult to study at large scales. Consequently, most research of floodplains has been conducted at small spatial and temporal scales. Inundation of floodplains can extend over many square kilometres, however, which unifies the floodplain landscape into an integrated ecosystem operating at the landscape scale. The lack of data and poor understanding of the landscape-scale structure and functioning of floodplains limits the possibility of managing floodplains sustainably as pressure for exploitation of their resources increases. This thesis quantifies the landscape-scale relationship between the frequency and patterns of inundation, the composition and structure of the landscape, and the functioning of the floodplain landscape in terms of the distribution and dynamics of plant growth vigour over an area of approximately 376,000 ha on the Lower Balonne Floodplain; highly biodiverse, semi-arid floodplain ecosystem that straddles the state border between New South Wales and Queensland approximately 500 km inland from the eastern coast of Australia. Mean annual rainfall at St.George, to the north of the study area, is approximately 400�450 mm per year, and median annual evaporation is approximately 2000 mm per year. Plants and animals on the floodplain are therefore heavily dependent upon flooding for survival. This project is based on the analysis of 13 Landsat Thematic Mapper satellite images captured over a 10-year period during which land and water resource development increased substantially. There is now concern that development activities have affected the functioning of the floodplain to the detriment of the natural environment and agricultural productivity. The impacts from these activities on the functioning of the floodplain are not yet known, however. Inundation of the Lower Balonne Floodplain was mapped using a two-part process involving a band ratio to identify deep clear water, and a change detection analysis to identify areas of shallower inundation. This analysis shows that, in contrast with most floodplains, the main flowpath of the Lower Balonne Floodplain runs along its central axis away from river channels, which flow along the floodplain�s outer edges. Inundation propagates from the centre of the floodplain out towards river channels as flood discharge volumes increase. Variations in the spatial pattern of inundated patches within the inundated extent create distinctive aquatic habitat and connectivity conditions at different flow levels. These can be described in terms of three connectivity phases: (I) Disconnected, in which isolated patches of inundation occur at low flows and river channels are hydrologically dislocated from the floodplain; (II) Interaction, where increased hydrological connectivity between inundated patches, and between the floodplain and the river channels at moderate flows, may enable significant exchange of materials, organisms and energy; and (III) Integration, in which almost the entire floodplain landscape is connected by open water during large magnitude floods. There is an abrupt transition in inundation patterns as flows increase between 60,000 ML day-1 and 65,000 ML day-1 (ARI 2 to 2.3 years) in which inundation patterns transform from being relatively disconnected into a highly integrated network of patches. These patterns may have significant consequences for the structure and functioning of the floodplain. Increases in flows across this small range may therefore mark an important ecological flow threshold on this system. Water resource development impacts have changed the relative frequency of flows on the Lower Balonne Floodplain, which will probably affect the sequence of connectivity phases over time. The most likely impact of these changes will be to create a floodplain that is drier overall than under natural flow conditions, and that has a smaller and wetter area of high inundation frequency. The relationship between inundation and the structure of the floodplain landscape was examined by comparing a landcover map showing the distribution and character of 10 landcover types to the inundation frequency maps. Landcover types were mapped from a multi-date Reference Image composite of seven images captured over a period of 10 years. The Reference Image improves landcover discrimination by at least 14% over classification of a single-date image, and has an overall accuracy between 82.5% and 85% at the landscape-scale. The Reference Image shows that the landscape of the Lower Balonne Floodplain is a highly fragmented mosaic of diverse landcover types distributed in association with inundation frequency. Stratifying the floodplain into zones of frequent and rare inundation shows that frequently inundated areas have a less fragmented but less diverse landscape structure than rarely inundated areas. Assessment of the functioning of each landcover types within the floodplain ecosystem, based on landscape pattern metric analysis, indicates that the function of landcover types also changes between inundation frequency zones. Most importantly, these changes include a transformation of the matrix landcover type, which controls the character and dynamics of the ecosystem overall, from Open Grassland to Coolibah Open Woodland in the frequently inundated zone. The landscape structure of the Lower Balonne Floodplain has been affected by development impacts, which include clearing of native vegetation, isolation of parts of the floodplain from natural inundation events by the construction of levee banks and drainage channels, and grazing impacts. Changes to the inundation regime may also affect the structure of the floodplain landscape. Over the long term, these changes are likely to create a larger area of Open Grassland and a smaller area of Coolibah Open Woodland as the zone of frequent inundation becomes smaller and wetter. To examine the functioning of the floodplain ecosystem, the inundation maps were compared to remotely sensed indexes of plant growth vigour at the landscape and landcover-type scales. The dynamics of plant growth vigour over time are influenced by factors operating at the regional, landscape and patch scales. Evaporation is the major control of growth vigour levels at the landscape scale, but each landcover type has a distinctive pattern of growth vigour dynamics that is related to its composition and location, and possibly its landscape structure. The association between the spatial distribution of plant growth vigour and inundation frequency is non-linear, with the highest growth vigour occurring where inundation occurs approximately once per year. This indicates a subsidy-stress interaction with water in which plant growth vigour is limited by soil anoxia in areas of frequent or long term inundation, and by drought stress in rarely inundated areas. A landscape-scale model of growth vigour dynamics, founded on the principles of Hierarchical Patch Dynamics and Landscape Ecology, was created from growth vigour measurements of each landcover type over time. This model was used to examine possible impacts of development activities on the functioning of the floodplain ecosystem. This model shows that the response of plant growth vigour development activities can be complex and subtle, and include a change in mean long-term growth vigour and an increased susceptibility to drought. The model also indicates that periods of high growth vigour can occur in substantially altered floodplain ecosystems. The model was also used to explore the levels of landcover change that might cause a threshold change in the functioning of the ecosystem, which may substantially alter the disturbance-response characteristics of the floodplain ecosystem. The model indicates a threshold change when the extent of Open Grassland is reduced by 30% of its extent in 1993, in which plant growth vigour response to disturbance is virtually inverted from that observed in the images. The temporal variability of plant growth vigour levels increases as the extent of Open Grassland is further reduced. This thesis makes a number of important contributions to our understanding of floodplain structure and functioning. It includes the development of new techniques suited to studying large diverse and complex landscapes at the landscape scale from satellite images, and provides quantitative data describing the links between the structure of floodplain landscapes and their functioning at the landscape scale. This work improves the understanding of floodplain ecosystems by integrating models of floodplain structure and functioning, which have been developed largely from smaller-scale studies of temperate and tropical floodplains, with landscape-scale measurements of this semi-arid system. This thesis also has implications for the Lower Balonne Floodplain by improving the level of information about this important ecosystem and providing baseline data against which the condition of the floodplain can be assessed in future.
48

A multi-scale investigation into the effects of permanent inundation on the flood pulse, in ephemeral floodplain wetlands of the River Murray

Francis, Cathy, n/a January 2005 (has links)
Using a multi-scale experimental approach, the research undertaken in this thesis investigated the role of the flood pulse in ephemeral floodplain wetlands of the River Murray, in order to better understand the impact of river regulation (and permanent inundation) on these wetlands. An ecosystem-based experiment was conducted on the River Murray floodplain, to compare changes in nutrient availability and phytoplankton productivity in three ephemeral wetlands (over a drying/reflooding cycle) with three permanently inundated wetlands. In the ephemeral wetlands, both drying and re-flooding phases were associated with significant increases in nutrient availability and, in some cases, phytoplankton productivity. It was demonstrated that the ?flood pulse?, as described by the Flood Pulse Concept (FPC), can occur in ephemeral wetlands in dryland river-floodplain systems, although considerable variation in the nature of the pulse existed amongst these wetlands. Results of this experiment suggest that factors such as the degree of drying and length of isolation during the dry phase, the rate of re-filling, timing of re-flooding and the number of drying/re-flooding cycles may be potentially important in producing the variation observed. Permanent inundation of ephemeral wetlands effectively removed these periods of peak nutrient availability and phytoplankton productivity, resulting in continuously low levels (of nutrient availability and phytoplankton productivity). It was concluded that alteration of the natural hydrological cycle in this way can significantly reduce nutrient availability, primary production and secondary production, essentially changing the structure and function, the ecology, of these wetlands. Equally, the results of this experiment indicate that some of the changes resulting from river regulation and permanent inundation can be somewhat reversed, within a relatively short period of time, given re-instatement of a more natural hydrological regime. A mesocosm experiment was used to examine the influence of the dry phase, specifically the effect of the degree of wetland drying, on patterns of nutrient availability and primary productivity comprising the flood pulse. Compared to permanent inundation, re-flooding of completely desiccated sediments increased carbon (C) and nitrogen (N) availability while partial drying generally decreased, or had little effect on, C and N availability after re-flooding. However, degree of drying had little effect on phosphorus availability or rates of primary production measured after re-flooding, and it is possible that these two factors are related. Partial drying reduced rates of community respiration after reflooding, possibly a reflection of the reduced carbon concentrations measured in these mesocosms in this phase of the experiment. Degree of drying also influenced the macrophyte community (measured after three months of flooding), with plant biomass generally decreasing and species diversity increasing as the degree of drying increased (with the exception of complete sediment desiccation which had lasting negative effects on both macrophyte biomass and species diversity). The results of the ecosystem and mesocosm experiments were utilised, in addition to results collected from the same experiment conducted at two smaller scales (minicosms and microcosms), to assess whether the effects of hydrological regime on nutrient availability at the ?wetland? scale could be replicated in smaller-scale experiments. None of the smaller-scaled experiments included in this investigation were able to replicate the specific response to hydrological regime recorded at the ecosystem scale, however the mesocosm experiment did produce results that were more similar to those at the ecosystem scale than those produced by the mini and microcosm experiments. The results of this study indicated that extrapolation of results from small-scale experiments should be undertaken with caution, and confirmed that a multi-scale approach to ecological research is wise, where large-scale field experimentation and/or monitoring provides a check on the accuracy, and hence relevance, of conclusions reached via mesocosm experiments.
49

GIS-gestützte Prognose der Biotopentwicklung auf Grundlage von Biotoptypen- und Vegetationserhebungen auf geplanten Rückdeichungsflächen an der Mittleren Elbe in Sachsen-Anhalt / GIS supported forecast of biotope development based on investigations of biotopes and vegetation on planned areas for setting back dykes at the Middle Elbe in Saxony-Anhalt

Baufeld, Ralf January 2005 (has links)
Durch die anthropogene Nutzung sind viele Auen in Mitteleuropa verändert worden, wobei insbesondere die Retentionsflächen stark verringert wurden. Während Auen seit längerem im Fokus der wissenschaftlichen Bearbeitung stehen, gibt es bisher große Wissensdefizite in der Frage der Auenreaktivierungen. Zum einen sind derartige Projekte bisher kaum verwirklicht und zum anderen ist ein langfristiges Monitoring notwendig, um die Anpassung von Biozönosen an die veränderten Standortbedingungen beobachten zu können. Um die Folgen derartiger Eingriffe zu analysieren, bieten sich computergestützte Modellierungen der Landschaftsentwicklung an, wie sie in der vorliegenden Arbeit verwirklicht wurden. Ziel der Arbeit war, mit Hilfe eines Geografischen Informationssystems (GIS) das Entwicklungspotenzial der Landschaft bei verschiedenen Rückdeichungsvarianten auf der Ebene der Biotoptypen darzustellen. Dabei ging es nicht um die Erstellung eines allgemein gültigen Auenmodells sondern um die Erarbeitung eines Modells für einen konkreten Anwendungsfall. Der erarbeitete Ansatz sollte zudem für die landschaftsplanerische Praxis geeignet sein. Als Beispielgebiete wurden Flächen an der Mittleren Elbe bei Rogätz und Sandau, beide im nördlichen Teil von Sachsen-Anhalt, ausgewählt.<br> Die vorliegende Arbeit gliedert sich in zwei Teile. Im ersten Teil werden Erhebungen und Auswertungen als Grundlage der Modellentwicklung dargestellt. Dazu wurden die Biotoptypen der Beispielgebiete flächendeckend erhoben und mit punktuellen Vegetationserhebungen ergänzt. Aus dem Forschungsprojekt "Rückgewinnung von Retentionsflächen und Altauenreaktivierung an der Mittleren Elbe in Sachsen-Anhalt" des Bundesministeriums für Bildung und Forschung (BMBF) standen standortökologische Daten der Hydrologie und Bodenkunde zur Verfügung. Ziel der Auswertung war, Schlüsselfaktoren für Hydrologie und Bodenbedingungen innerhalb der rezenten Aue zu identifizieren, die zur Ausprägung bestimmter Biotoptypen führen.<br> Im zweiten Teil der Arbeit wurde ein Modell für Biotoptypenpotenziale auf den geplanten Rück&ndash;deichungsflächen entwickelt. Das Modell bearbeitet die Datenbank der verwendeten GIS-Dateien, die auf Daten zum Bestand beruht und um solche der Prognose der Standortökologie (Hydrologie und Boden) im Rückdeichungsfalle aus dem BMBF-Projekt erweitert wurde. Weitere Voraussetzung für die Modellierung war die Erarbeitung von Leitbildern, in denen unterschiedliche Nutzungsszenarios für die Landschaft nach Deichrückverlegung hypothetisch festgelegt wurden. Insbesondere die Nutzungsintensität wurde variiert, von einer Variante intensiver land- und forstwirtschaftlicher Nutzung über sogenannte integrierte Entwicklungsziele aus dem BMBF-Projekt bis hin zu einer Variante der Naturschutznutzung. Zusätzlich wurde eine zukünftige Potentielle Natürliche Vegetation modelliert.<br> Eine Überprüfung des Modell fand für den Raum der rezenten Aue in der intensiven Nutzungsvariante statt, die der gegenwärtigen Nutzung am nächsten kommt. Werden Informationen des Bestandsbiotoptyps als Korrekturgröße in das Modell einbezogen, konnte für viele Biotoptypen eine Trefferquote von über 90 % erreicht werden. Bei flächenmäßig weniger bedeutenden Bio&ndash;toptypen lag dieser Wert aufgrund der schmaleren Datenbasis zwischen 20 und 40 %. Als Ergebnis liegt für unterschiedliche Deichvarianten und Leitbilder in den Beispielgebieten die Landschaftsentwicklung als Biotoppotenzial vor. Als eine vereinfachte Regionalisierung der punktuellen Vegetationsdaten wurde im Modell geprüft, inwieweit die modellierten Biotopflächen der Charakteristik der pflanzensoziologischen Aufnahmen aus der rezenten Aue entsprechen. In dem Falle wurde die Pflanzengesellschaft der jeweiligen ökologisch im Rahmen der Untersuchung einheitlichen Flächeneinheit zugeordnet. Anteilig lässt sich damit die Biotopprognosefläche pflanzensoziologisch konkretisieren. Die vorliegende Arbeit gehört zu den bisher wenigen Arbeiten, die sich mit den Folgen von Auenreaktivierung auf die Entwicklung der Landschaft auseinandersetzen. Sie zeigt eine Möglichkeit auf, Prognosemodelle für Biotoptypen und Vegetation anhand begrenzter Felduntersuchungen zu entwerfen. Derartige Modelle können zum Verständnis von Eingriffen in den Naturhaushalt, wie sie die Deichrückverlegungen darstellen, beitragen und eine Folgenabschätzung unterstützen. / Most of the floodplains in Central Europe are highly altered by man. In particular, recent inundation areas have been dramatically reduced. Before the Elbe-flood-disaster of the year 2002 there had already been considerations about combining flood-protection and restoration of floodplains. While research has focused on floodplains for a considerable time, knowledge on the reactivation of floodplains is still significantly lacking. Until now, only a few projects have been realized, and there has not been enough long-term moni&ndash;toring of the adaption of habitats to changing conditions. Computerized models of landscape development, as utilized in the presented work, can help to address these questions. The aim of the study was to show the potential development of the landscape on the scale of biotopes under different scenarios of floodplain expansion by application of a geographic information system (GIS). It was not intended to create a general floodplain-model. The model aimed at a specific applied case and should also be applicable for questions of landscape planning. Two areas near the villages of Sandau and Rogätz at the Middle Elbe River in the north of the German federal state of Saxony-Anhalt were selected.<br> The presented work is divided into two parts. The first describes the sampling and evaluation of data as a basis for modeling. For this, the biotopes were mapped in total in the two study areas. Additionally, vegetation data were collected from selected sites mainly in the grassland and forest-biotopes. Hydrological and soil condition data were available through the project "Rückgewinnung von Retentionsflächen und Altauenreaktivierung an der Mittleren Elbe in Sachsen-Anhalt" of the German Ministry of Education and Science (BMBF). This part of the study aimed to identify the ecological key factors in the recent floodplain that lead to the development of the different biotopes.<br> In the second part of the presented work a model for the potential biotopes on the expanded floodplain after setting back the dikes was developed. The model alters the GIS database and adds a potential biotope. First this database must be expanded to integrate the hydrological and soil data of the BMBF-project for the expanded floodplain. Different hypo&ndash;thetical land use scenarios were assumed and applied to the model. The three different variants of land use adapted from the BMBF-project were intensive land use, land use under conditions of nature-conservation an integration of both extremes. In the case of intensive land &ndash;use arable fields were modeled in areas which are flooded on average only every ten years or less. As a fourth scenario the potential natural vegetation was modeled.<br> An evaluation of the model was made for the recent floodplain under intensive land use conditions, which are close to the current land use. By correcting the models results with information of the current biotope composition, many biotopes could be predicted correctly with 90 % accuracy. For biotopes which are rare in the study area the prediction rate lay between 20 and 40 %. The result of the second part of the presented work was the modeling of the potential biotopes for the different land use scenarios and the different variants of setting back the dikes.<br> Integrated in the model was a module of a simplified regionalization of the vegetation data. It was tested whether the characteristics of the processed unit of the GIS-database fit the results of the vegetation sampling of the first part of the study. Where this was the case, the whole unit was characterized as a phytosociologic vegetation-unit. Thus, for part of the modeling area the biotope-potentials could be expanded with information on the actual vegetation.<br> The present work is one of the few studies so far dealing with the consequences for the landscape of reactivating floodplains which are separated from rivers by dikes. It shows the possibility to use models to predict changes in biotopes and vegetation based on limited field data. Such models can help to understand the altering of nature caused by such impacts and to estimate the possible consequences.
50

Floodplain risk analysis using flood probability and annual exceedance probability maps /

Smemoe, Christopher M., January 2004 (has links) (PDF)
Thesis (Ph. D.)--Brigham Young University. Dept. of Civil and Environmental Engineering, 2004. / Includes bibliographical references (p. 223-229).

Page generated in 0.0336 seconds