41 |
The Oxford Vehicle Model : a tool for modeling and simulating the powertrains of electric and hybrid electric vehiclesDoucette, Reed January 2013 (has links)
This dissertation addresses the challenges of scoping and sizing components and modeling the tank to wheel energy flows in new and rapidly evolving classes of automotive vehicles. It introduces a system of computer models, known as the Oxford Vehicle Model (OVEM), which provide for the novel simulation of the powertrains of electric (EV) and hybrid electric vehicles (HEV). OVEM has a three-level structure that makes a unique contribution to the field of vehicle analysis by enabling a user to proceed from performing scoping and sizing exercises through to accurately simulating the energy flows in powertrains of EVs and HEVs utilizing existing and emerging technologies based on real world data. Level 1 uses simplified models to support initial component scoping and sizing exercises in an analysis environment where uncertainty regarding component specifications is high. Level 2 builds on Level 1 by obtaining more refined component scoping and sizing estimates via the use of component models based on well-understood scientific principles that are product-independent – a crucial feature for obtaining unbiased scoping and sizing estimates. Level 3 employs a high degree of fidelity in that its models impose actual physical limits and are based on data from real technologies. This dissertation concludes with two chapters based on studies published as journal articles that used OVEM to address key issues facing the development of EVs and HEVs. The first study used OVEM to make the novel comparison between high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel consumption while functioning as the energy storage systems in an HEV. The second study applied OVEM towards a novel examination of the CO2 emissions from plug-in HEVs (PHEVs) and compares their CO2 emissions to those from similar EVs and ICE-based vehicles.
|
42 |
Pressure Pulse Generation with Energy RecoveryRotthäuser, Siegfried, Hagemeister, Wilhelm, Pott, Harald 02 May 2016 (has links) (PDF)
The Pressure Impulse test-rig uses the principal energetic advantages of displacementcontrolled systems versus valve-controlled systems. The use of digital-control technology enables a high dynamic in the pressure curve, according to the requirements of ISO6605. Accumulators, along with inertia, make energy recovery possible, as well as, enabling the compression energy to be re-used. As a result of this, there is a drastic reduction in operating costs. A simulation of the system before starting the project allows the development risks to be calculated and the physically achievable performance limits to be shown.
|
43 |
Análisis y diseño de volantes de inercia de materiales compuestosRipoll Masferrer, Lluís 11 January 2006 (has links)
Los volantes de inercia superan a las baterías eléctricas por su capacidad de absorber y ceder energía en poco tiempo y, si se fabrican con materiales compuestos, también por su reducido peso. La tesis presenta un estudio sobre los rotores de materiales compuestos aplicados a los acumuladores cinéticos para hacerlos más asequibles a usos industriales baratos. Para ello se proponen dos objetivos: obtener un sistema analítico de cálculo, y mejorar el diseño de rotores de bajo coste.Se desarrolla un sistema analítico de cálculo muy completo, tanto en las cargas como en las tensiones. Se consideran todas las cargas necesarias para el diseño mecánico del rotor: la fuerza centrífuga, la fuerza de aceleración y las tensiones residuales, térmica y de hidratación; y se determinan todas las componentes, normales y cortantes, de la tensión para cada punto del rotor.El cálculo en condiciones de tensión plana, utilizado por la mayoría de autores, se amplía con el cálculo en deformación axial constante, que es una variante mejorada de la deformación plana. Se comprueba que sus resultados son mejores que los de tensión plana cuando se comparan con los obtenidos en modelos de elementos finitos. Paralelamente, como aportación nueva de la tesis, se deducen las funciones de la variación de la tensión axial y de la tensión cortante radial-axial a lo largo del eje longitudinal del rotor. A partir de estos resultados se desarrolla un sistema general de cálculo que, además de unificar los sistemas de tensión plana y deformación axial constante, permite determinar todas las tensiones en cualquier posición radial-axial del rotor.Este sistema unificado de cálculo se amplia con tres particularidades: una aplicación de cálculo para resolver rotores multicapa, las ecuaciones especiales para los materiales singulares no resolubles con las ecuaciones generales, y el cálculo de capas con fibras orientadas axialmente aplicadas para refuerzo en configuraciones especiales.Con el objeto de mejorar las prestaciones del rotor se estudian dos procedimientos para crear tensiones de pretensado: generando tensiones durante el bobinado y utilizando las tensiones residuales térmicas. En el primero se elabora un sistema analítico de cálculo para determinar las tensiones residuales de bobinado y se complementa con una simulación mediante elementos finitos basada en submodelos incrementales. Ambos cálculos son capaces de simular el material no curado aplicando las propiedades viscoelásticas de los ensayos experimentales de otros autores. En el segundo se presenta un sistema nuevo, denominado pretensado térmico, basado en el curado por etapas, que genera tensiones residuales parecidas a las de bobinado pero con menos problemas de fabricación.El diseño de volantes se aplica a tres configuraciones básicas: rotores híbridos multicapa con materiales de rigidez progresiva, rotores de un solo material con anillos de elastómero y rotores con pretensado térmico.Sus prestaciones se valoran con tres variables: la masa, el volumen y el coste del material; de las cuales el coste es la principal y se utiliza para la optimización de la geometría.En cada configuración se determina la energía máxima para distintas relaciones de radios del rotor y se compara con el rotor de un sólo material. Se utilizan los materiales básicos usados en la fabricación de rotores: la fibra de carbono con matriz epoxi, la fibra de vidrio con matriz epoxi, el aluminio y el acero. Los dos materiales compuestos ofrecen mejores resultados que los metales, pero disminuyen sensiblemente en rotores con espesor de pared grande. En estos casos, la energía por unidad de coste mejora aplicando los anillos elásticos y el pretensado térmico. / Flywheels are better than electric batteries in that they absorb and yield energy in shorter time and, if made out of composite materials, also in that they weight less. This thesis presents a study of composite material rotors applied to kinetic accumulators in order to make them usable for low cost general industrial uses. Two objectives are proposed: a) to develop an analytical system for computation and b) to design alternatives in order to improve the performance on low-cost rotors.The analytical system is intended to be very complete, considering all relevant types of external loads and stress components. For the former, centrifugal, acceleration forces and residual, thermal and moisture stresses are included. For the latter, five normal and shear components are computed at each point of the rotor.The usual plane stress condition is expanded with the consideration of constant axial strain, along the lines of the plane strain hypothesis but with greater accuracy. It is shown that the current theory results fit the ones from finite elements much better than those from plain stress. As a new contribution, the functions for the axial stress and the radial-axial stress along the axis of the rotor are developed. From these results, a general system that unifies the plane stress and constant axial strain can compute the stress state at any position.In addition, the unified system includes three novel aspects: an extension of computation for multi-layer rotors, special equations for some materials in which behaviour present singularities and the computation of layers with fibers along the axial direction, which can be useful as a reinforcement for some configurations.Two procedures that can create beneficial residual stresses are studied: generating stresses during the filament winding and using the thermal stresses. For the first, analytical expressions are developed and validated and complemented with especially developed finite elements based on incremental submodels. In both cases the material is characterized by viscoelastic properties taken from the literature. For the second, a new procedure called thermal prestress is based on the accumulation of partial curing processes (by stages), which is able to create residual stresses similar to those of winding but involving simpler manufacturing.Three basic configurations are studied for the design: hybrid rotors with progressive stiffness along the radius, single material rotors with elastomer thin rings and rotors manufactured with thermal prestress, evaluating the performance as a function of the mass, volume and cost of the material. The latter is defined as the most important, and it is used as a reference for the geometry optimization.The maximum energy stored on each of the configurations is compared with that of a single material rotor, using the most common ones: glass and carbon fiber both with epoxy matrix, aluminium and steel. Results show that glass/epoxy has the highest storing capability per unit cost, although the number is greatly reduced when the thickness increases. If this rotor has a thin layer of carbon/epoxy, the capability does not increase, although it does with distributed elastomeric layers. There is also an increase with fabrication based on the thermal prestress technique.
|
44 |
Design and Analysis of a Shock Absorber with a Variable Moment of Inertia Flywheel for Passive Vehicle SuspensionXu, Tongyi 05 November 2013 (has links)
Conventional vehicle suspensions consist of a spring and a damper, while mass is rarely used. A mass, if properly used, can also create a damping-like effect. However, a mass has only one terminal which makes it difficult to be incorporated into a suspension. In order to use a mass to achieve the damping-like effect, a two-terminal mass (TTM) has to be designed. However, most of the reported TTMs are of fixed moment of inertia (TTM-CMI), which limits the further improvement of the suspension performance and responsiveness to changes in environment and driving conditions.
In this study, a TTM-based vibration absorber with variable moment of inertia (TTM-VMI) is proposed. The main component of the proposed TTM absorber contains a hydraulic-driven flywheel with sliders. The moment of inertia changes with the positions of the sliders in response to the driving conditions. The performance of the proposed TTM-VMI absorber has been analyzed via dynamics modeling and simulation and further examined by experiments. The analysis results indicate that the TTM-VMI absorber outperforms the TTM-CMI design in terms of body displacement; and ride comfort, tire grip and suspension deflection for zero and impulse inputs with comparable performance for sinusoidal input.
|
45 |
UPS system : how current and future technologies can improve energy efficiency in data centresMilad, Muftah A. January 2017 (has links)
A data centre can consist of a large group of networked servers and associated power distribution, networking, and cooling equipment, all that application consumes enormous amounts of energy as a small city, which are driving to a significant increase in energy inefficiency problems in data centre, and high operational costs. Also the massive amounts of computation power contained in these systems results in many interesting distributed systems and resource management problems. In recent years, research and technologies in electrical engineering and computer science have made fast progress in various fields. One of the most important fields is the energy consumption in data centre. In recent years the energy consumption of electronic devices in data centre, as reported by. Choa, Limb and Kimb, nearly 30000000 kWh of power in a year, may consume by a large data centre and cost its operator around £3,000,000 for electricity alone. Some of the UK sites consume more than this. In the UK data centre the total power required are amid 2-3TWh per year. Energy is the largest single component of operating costs for data centres, varying from 25-60%. Agreeing to many types of research, one of the largest losses and causes of data centre energy inefficiency power distribution is from the uninterruptible power supply (UPS). So a detailed study characterized the efficiencies of various types of UPSs under a variety of operating conditions, proposed an efficiency label for UPSs, also investigate challenges related to data centre efficiency, and how all new technologies can be used to simplify deployment, improve resource efficiency, and saving cost. Data centre energy consumption is an important and increasing concern for data centre managers and operators. Inefficient UPS systems can contribute to this concern with 15 percent or more of utility input going to electrical waste within the UPS itself. For that reason, maximizing energy efficiencies, and reduce the power consumption in a data centre has become an important issue in saving costs and reducing carbon footprint, and it is necessary to reduce the operational costs. This study attempts to answer the question of how can future UPS topology and technology improve the efficiency and reduce the cost of data centre. In order to study the impact of different UPS technologies and their operating efficiencies. A model for a medium size data centre is developed, and load schedules and worked diagrams were created to examine in detail and test the components of each of the UPS system topologies. The electrical infrastructure topology to be adopted is configured to ‘2N’ and ‘N+1’ redundancy configuration for each UPS systems technologies, where ‘N’ stands for the number of UPS modules that are required to supply power to data centre. This work done at RED engineering designs company. They are professionals for designing and construction of a new Tier III and Tier IV data centres. The aim of this work is to provide data centre managers with a clearer understanding of key factors and considerations involved in selecting the right UPS to meet present and future requirements.
|
46 |
Design and Analysis of a Shock Absorber with a Variable Moment of Inertia Flywheel for Passive Vehicle SuspensionXu, Tongyi January 2013 (has links)
Conventional vehicle suspensions consist of a spring and a damper, while mass is rarely used. A mass, if properly used, can also create a damping-like effect. However, a mass has only one terminal which makes it difficult to be incorporated into a suspension. In order to use a mass to achieve the damping-like effect, a two-terminal mass (TTM) has to be designed. However, most of the reported TTMs are of fixed moment of inertia (TTM-CMI), which limits the further improvement of the suspension performance and responsiveness to changes in environment and driving conditions.
In this study, a TTM-based vibration absorber with variable moment of inertia (TTM-VMI) is proposed. The main component of the proposed TTM absorber contains a hydraulic-driven flywheel with sliders. The moment of inertia changes with the positions of the sliders in response to the driving conditions. The performance of the proposed TTM-VMI absorber has been analyzed via dynamics modeling and simulation and further examined by experiments. The analysis results indicate that the TTM-VMI absorber outperforms the TTM-CMI design in terms of body displacement; and ride comfort, tire grip and suspension deflection for zero and impulse inputs with comparable performance for sinusoidal input.
|
47 |
Kyvadlo čelisťového drtiče / Pendulum jaw crusherPitner, Jakub January 2013 (has links)
This master thesis deals with structural design of pendulum for single toggle jaw crusher DC 110x70 and consists of several main parts. The first part focuses on the processing of mineral materials, especially on the process of mechanical uncoupling. The second part compares main characteristics of single toggle and double toggle jaw crushers. The third part deals with the structural nodes for the crusher DC 110x70. Another part is consisted of two variants for the pendulum construction with a comparison of the advantages and disadvantages. For the selected variant is carried out the stress control using Finite element method (FEM) in the program I-DEAS. The last part focuses on the positioning an exit slit for designed pendulum.
|
48 |
Experimentální pracoviště řízeného pohonu s vysokou dynamikou / Experimental workplace of controlled drive with high dynamicsRozkošný, Miroslav January 2013 (has links)
My diploma thesis deals with the basic principle of the frequency inverter and his construnction. In the next section are analyze the basic properties and characteristics of the using equipment. The main part of this thesis is to investigate the dynamic properties of asynchronous electric motor controlled by a frequency inverter using STARTER. The results of experiments are compared and analyzed.
|
49 |
Pressure Pulse Generation with Energy RecoveryRotthäuser, Siegfried, Hagemeister, Wilhelm, Pott, Harald January 2016 (has links)
The Pressure Impulse test-rig uses the principal energetic advantages of displacementcontrolled systems versus valve-controlled systems. The use of digital-control technology enables a high dynamic in the pressure curve, according to the requirements of ISO6605. Accumulators, along with inertia, make energy recovery possible, as well as, enabling the compression energy to be re-used. As a result of this, there is a drastic reduction in operating costs. A simulation of the system before starting the project allows the development risks to be calculated and the physically achievable performance limits to be shown.
|
50 |
Implementing Eccentric Resistance Training—Part 2: Practical RecommendationsSuchomel, Timothy J., Wagle, John P., Douglas, Jamie, Taber, Christopher B., Harden, Mellissa, Gregory Haff, G., Stone, Michael H. 09 August 2019 (has links)
The purpose of this review is to provide strength and conditioning practitioners with recommendations on how best to implement tempo eccentric training (TEMPO), flywheel inertial training (FIT), accentuated eccentric loading (AEL), and plyometric training (PT) into resistance training programs that seek to improve an athlete’s hypertrophy, strength, and power output. Based on the existing literature, TEMPO may be best implemented with weaker athletes to benefit positional strength and hypertrophy due to the time under tension. FIT may provide an effective hypertrophy, strength, and power stimulus for untrained and weaker individuals; however, stronger individuals may not receive the same eccentric (ECC) overload stimulus. Although AEL may be implemented throughout the training year to benefit hypertrophy, strength, and power output, this strategy is better suited for stronger individuals. When weaker and stronger individuals are exposed to PT, they are exposed to an ECC overload stimulus as a result of increases in the ECC force and ECC rate of force development. In conclusion, when choosing to utilize ECC training methods, the practitioner must integrate these methods into a holistic training program that is designed to improve the athlete’s performance capacity.
|
Page generated in 0.0317 seconds