• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 392
  • 77
  • 75
  • 35
  • 15
  • 13
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • Tagged with
  • 827
  • 559
  • 147
  • 136
  • 88
  • 82
  • 75
  • 73
  • 58
  • 53
  • 52
  • 50
  • 45
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

The significance of the domains of protein disulfide isomerase for the different functions of the protein

Pirneskoski, A. (Annamari) 23 October 2003 (has links)
Abstract Protein disulfide bonds are covalent links formed between the thiol groups of cysteine residues. In many proteins, they have an important role in stabilizing the three-dimensional conformation of the polypeptide chain. Usually proteins are physiologically active and functional only when they are correctly folded. Protein folding takes place very soon after the synthesis of a new polypeptide chain. Proteins which are to be secreted from the cell fold in a specialized compartment, the endoplasmic reticulum (ER). Folding and disulfide bond formation in the ER does not happen spontaneously, there are proteins which are specialized in assisting in these processes. Protein disulfide isomerase (PDI) is a multifunctional protein, which is capable of catalysing both of disulfide bond formation and folding of a protein. In addition, it has other functions: it is an essential part of two protein complexes: collagen prolyl 4-hydroxylase (C-P4H) and microsomal triglyceride transfer protein. C-P4H is an enzyme essential in the formation of collagens, proteins found in connective tissue. The function of C-P4H is to catalyse the hydroxylation of prolines, which is essential for the structural stability of collagens. C-P4H is a tetramer, formed of two catalytic α subunits and two β subunits, which are identical to PDI. The function of PDI in C-P4H is apparently to keep it in a soluble, functionally active conformation. In mammals there are several proteins similar to PDI, together forming a PDI family of proteins. They share both structural and functional similarities. One of these proteins is ERp57. It is specialized in assisting in the folding and disulfide bond formation of glycoproteins. PDI consists of four domains, two of which contain a catalytic site for disulfide bond formation. One domain is the main site of interaction with other proteins and one domain is of unknown function. In this study, the role of these domains in the activities of PDI was investigated. The peptide-binding domain was characterized in detail. In addition, structural similarities of PDI and ERp57 were studied by formation of hybrid proteins containing domains of both and comparing the activities of these recombinant proteins to those of PDI.
292

ERp57—Characterization of its domains and determination of solution structures of the catalytic domains

Silvennoinen, L. (Laura) 25 April 2006 (has links)
Abstract The correct three dimensional structures of proteins are essential for their ability to function properly. Proteins start to fold as soon as they are synthesized in the ribosomes from activated amino acids. Many secreted, cell-surface, secretory pathway and endoplasmic reticulum (ER) lumenal proteins have in their amino acid sequence cysteine residues which form intra- and intermolecular disulfide bridges that stabilize the overall fold of the proteins and protein complexes. The formation of correct disulfide bonds is a complex process which takes place within the ER. Protein disulfide isomerase (PDI) is the key enzyme in the formation and rearrangement of correct disulfide bonds in the ER. It is an archetypal and the best studied member of the PDI family, i.e. a group of ER proteins that resemble thioredoxin (TRX), a protein reductase, in their structure. PDI has a four domain a-b-b'-a' structure the a and a' domains having the catalytic activity and amino acid sequence similarity to TRX. In addition to its function as a thiol-disulfide oxidoreductase, PDI acts as the β subunit in two protein complexes: collagen prolyl 4-hydroxylase (C-P4H) and microsomal triglyceride transfer protein (MTP). The closest homologue of PDI is the multifunctional enzyme and chaperone ERp57 that functions in concert with two lectins, calnexin (CNX) and calreticulin (CRT) specifically in the folding of proteins that have sugar moieties linked to them. ERp57 is 56% similar to PDI in its amino acid sequence and has also the four-domain architecture. Despite the high similarity in their structures ERp57 cannot substitute for PDI as the β subunit of C-P4H. The minimum requirement for the C-P4H tetramer assembly is fulfilled by domains b' and a' of PDI, while domains a and b enhance this function and can be substituted in part by those of ERp57. Until very recently the structural information of any of the PDI family members, which contains the TRX active site was limited to solution structures of human PDI domains a and b. In this research the domain boundaries of the full length ERp57 were defined and the individual domains characterized. Furthermore the solution structures of the catalytically active domains a and a' of ERp57 were studied by nuclear magnetic resonance (NMR).
293

Crystallographic studies on the structure-function relationships in triosephosphate isomerase

Kursula, I. (Inari) 16 May 2003 (has links)
Abstract The triosephosphate isomerase (TIM) barrel superfamily is a broad family of proteins, most of which are enzymes. At the amino-acid-sequence level, many of the members of this family share little, if any, homology. Yet, they adopt the same three-dimensional (βα)8 fold. The TIM barrel fold seems to be a good framework for many different kinds of enzymes, providing unique possibilities for both natural and human-designed evolution, as the catalytic center and the stabilizing features are separated to different ends of the barrel. Indeed, in the light of most recent studies, it seems likely that at least most of the different TIM barrel enzymes, catalyzing a huge variety of reactions, have evolved from a common ancestor. TIM can be considered a real text-book enzyme — its catalytic properties and stucture-function relationships have been studied for decades. Still, at present, we are quite far from understanding the structural features that make TIM and other enzymes such superior catalysts in both efficiency and precision. TIM is a dimeric enzyme that consists of two identical subunits of 250 residues. It catalyzes the interconversion of dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate in glycolysis. The basics of this reaction are well known, but there is ongoing discussion about the details of the proton transfer steps, and three alternative pathways have been suggested. In addition, it is a fascinating question how the enzyme succeeds in abstracting a highly stable proton from a carbon atom of the substrate. This study was undertaken to shed light on some of the questions concerning the structure-function relationships in TIM. The most important findings are the elucidation of the role of Asn11 as a catalytic residue and the meaning of the flexibility of both the catalytic Glu167 side chain as well as the substrate during catalysis, and the presence of a low-barrier hydrogen bond between Glu167 and a transition-state analogue, 2-phosphoglycolate. Furthermore, significant results were obtained on the importance of a conserved salt bridge, 20 Å away from the active site and the dimer interface, for the stability and folding of TIM as well as on the factors influencing the opening of the flexible loop 6 upon product release.
294

Characterisation of the plasmodium falciparum Hsp40 chaperones and their partnerships with Hsp70

Botha, Melissa January 2009 (has links)
Central to this research, 40 kDa Heat shock proteins (Hsp40s) are known to partner (or cochaperone) 70 kDa Heat shock proteins (Hsp70s), facilitating the selection and transfer of protein substrate to Hsp70 and the stimulation of the protein folding ability of Hsp70. Members of the diverse Hsp70-Hsp40 protein complement of Plasmodium falciparum have been implicated in the cytoprotection of this malaria parasite, and are thought to facilitate the protein folding, assembly and translocation tasks required by the parasite to commandeer the infected human erythrocyte subsequent to invasion. In particular, the parasite has evolved an expanded and specialised 43- member suite of Hsp40 proteins, 19 of which bear an identifiable export motif for secretion into the infected erythrocyte cytoplasm where they potentially interact with human Hsp70. Although type I Hsp40 proteins are representative of typical regulators of Hsp70 activity, only two of these proteins are apparent in the parasite’s Hsp40 complement. These include a characteristic type I Hsp40 termed PfHsp40, and a larger, atypical type I Hsp40 termed Pfj1. Both Hsp40 proteins are predicted to be parasite-resident and are most likely to facilitate the co-chaperone regulation of the highly abundant and stress-inducible Hsp70 homolog, PfHsp70-I. In this work, the co-chaperone functionality of PfHsp40 and Pfj1 was elucidated using in vivo and in vitro assays. Purified recombinant PfHsp40 was shown to stimulate the ATPase activity of PfHsp70-I in in vitro single turnover and steady state ATPase assays, and co-operate with PfHsp70-I in in vitro aggregation suppression assays. In these in vitro assays, heterologous partnerships could be demonstrated between PfHsp70-I and the human Hsp40, Hsj1a, and human Hsp70 and PfHsp40, suggesting a common mode of Hsp70-Hsp40 interaction in the parasite and host organism. The functionality of the signature Hsp40 domain, the Jdomain, of Pfj1 was demonstrated by its ability to replace the equivalent domain of the A. tumefaciens Hsp40, Agt DnaJ, in interactions with the prokaryotic Hsp70, DnaK, in the thermosensitive dnaJ cbpA E. coli OD259 deletion strain. An H33Q mutation introduced into the invariant and crucial HPD tripeptide motif abrogated the functionality of the J-domain in the in vivo complementation system. These findings provide the first evidence for the conservation of the prototypical mode of J-domain based interaction of Hsp40 with Hsp70 in P. falciparum. Immunofluorescence staining revealed the localisation of PfHsp40 to the parasite cytoplasm, and Pfj1 to the parasite cytoplasm and nucleus in cultured intraerythrocytic stage P. falciparum parasites. PfHsp70-I was also shown to localise to the parasite cytoplasm and nucleus in these stages, consistent with the literature. Overall we propose that PfHsp40 and Pfj1 co-localise with and regulate the chaperone activity of PfHsp70-I in P. falciparum. This is the first study to identify and provide evidence for a functional Hsp70-Hsp40 partnership in P. falciparum, and provides a platform for future studies to elucidate the importance of these chaperone partnerships in the establishment and survival of the parasite in the intraerythrocytic-stages of development.
295

Expression of heat shock proteins on the plasma membrane of cancer cells : a potential multi-chaperone complex that mediates migration

Kenyon, Amy 29 March 2011 (has links)
Current dogma suggests that the Heat Shock Protein (Hsp) molecular chaperones and associated co-chaperones function primarily within the cell, although growing evidence suggests a role for these proteins on the plasma membrane of cancer cells. Hsp90 does not function independently in vivo, but instead functions with a variety of partner chaperones and co-chaperones, that include Hsp70 and Hsp90/Hsp70 organising protein (Hop), which are thought to regulate ATP hydrolysis and the binding of Hsp90 to its client proteins. Hsp90 on the plasma membrane appears to have distinct roles in pathways leading to cell motility, invasion and metastasis. We hypothesised that Hsp90 on the plasma membrane is present as part of a multi-chaperone complex that participates in the chaperone-assisted folding of client membrane proteins in a manner analogous to the intracellular chaperone complex. This study characterised the membrane expression of Hsp90, Hsp70 and Hop in different cell models of different adhesive and migratory capacity, namely MDA-MB-231 (metastatic adherent breast cancer cell line), MCF-7 (non-metastatic adherent breast cancer cell line), U937 and THP1 (monocytic leukemia suspension cell lines). Membrane expression of the Hsps was analysed using a combination of subcellular fractionation, biotin-streptavidin affinity purification and immunofluorescence. This study provided evidence to suggest that Hsp90, Hsp70 and Hop are membrane associated in MDA-MB-231 and MCF-7 breast cancer cells. Hsp90, Hsp70 and Hop associated with the plasma membrane such that at least part of the protein is located extracellularly. Immunofluorescence analysis showed that Hsp90, Hsp70 and Hop at the leading edge may localize to membrane ruffles in MDA-MB-231 cells, in accordance with the published role of Hsp90 in migration. An increase in this response was seen in cells stimulated to migrate with SDF-1. By immunoprecipitation, we isolated a putative extracellular membrane associated complex containing Hsp90, Hsp70 and Hop. Using soluble Hsp90 and antibodies against membrane associated Hsp90, we suggested roles for soluble extracellular Hsp90 in mediating migration by wound healing assays and inducing actin reorganisation and vinculin-based focal adhesion formation. The effects of extracellular Hsp90 are mediated by signalling through an ERK1/2 dependent pathway. An anti-Hsp90 antibody against an N-terminal epitope in Hsp90 appeared to be able to overcome the death inducing effects of a combination of SDF-1 and AMD3100, while soluble Hsp90 could not overcome this effect. We propose that this study provides preliminary evidence that extracellular Hsp90 functions as part of a multi-chaperone complex that includes Hsp70 and Hop. The extracellular Hsp90 chaperone complex may mediate cell processes such as migration by modulating the conformation of cell surface receptors, leading to downstream signalling.
296

Synthesis of Aromatic Monothiols and Aromatic Dithiols to Increase the Folding Rate and Yield of Disulfide Containing Proteins

Patel, Amar S 12 November 2010 (has links)
Most pharmaceutically relevant proteins and many extracellular proteins contain disulfide bonds. Formation of the correct disulfide bonds is essential for stability in almost all cases. Disulfide containing proteins can be rapidly and inexpensively overexpressed in bacteria. However, the overexpressed proteins usually form aggregates inside the bacteria, called inclusion bodies, which contains inactive and non-native protein. To obtain native protein, inclusion bodies need to be isolated and resolubilized, and then the resulting protein refolded in vitro. In vitro protein folding is aided by the addition of a redox buffer, which is composed of a small molecule disulfide and/or a small molecule thiol. The most commonly used redox buffer contains reduced and oxidized glutathione. Recently, aliphatic dithiols and aromatic monothiols have been employed as redox buffers. Aliphatic dithiols improved the yield of native protein as compared to the aliphatic thiol, glutathione. Dithiols mimic the in vivo protein folding catalyst, protein disulfide isomerase, which has two thiols per active site. Furthermore, aromatic monothiols increased the folding rate and yield of lysozyme and RNase A relative to glutathione. By combining the beneficial properties of aliphatic dithiols and aromatic monothiols, aromatic dithiols were designed and were expected to increase in vitro protein folding rates and yields. Aromatic monothiols (1-4) and their corresponding disulfides (5-8), two series of ortho- and para-substituted ethylene glycol dithiols (9-15), and a series of aromatic quaternary ammonium salt dithiols (16-17) were synthesized on a multigram scale. Monothiols and disulfides (1-8) were utilized to fold lysozyme and bovine pancreatic trypsin inhibitor. Dithiols (11-17) were tested for their ability to fold lysozyme. At pH 7.0 and pH 8.0, and high protein concentration (1 mg/mL), aromatic dithiols (16, 17) and a monothiol (3) significantly enhanced the in vitro folding rate and yield of lysozyme relative to the aliphatic thiol, glutathione. Additionally, aromatic dithiols (16, 17) significantly enhance the folding yield as compared to the corresponding aromatic monothiol (3). Thus, the folding rate and yield enhancements achieved in in vitro protein folding at high protein concentration will decrease the volume of renaturation solution required for large scale processes and consequently reduce processing time and cost.
297

Characterization of the Ferret Neocortical Development using Structural Magnetic Resonnance Imaging / Caractérisation du développement néocortical du Furet par Imagerie à Résonance Magnétique Structurelle

Foubet, Ophélie 12 October 2018 (has links)
Le néocortex humain est particulièrement plissé. Des variations de plissement cortical ont été associées à certaines maladies neuro-développementales comme l’autisme ou la schizophrénie. Il est cependant difficile de savoir ce qu’impliquent ces différences de motif, au delà d’être des marqueurs de variations de la structure interne du cortex. Au cours du développement, les plis corticaux apparaissent chez l’humain pendant le dernier trimestre de gestation, simultanément avec le développement de sa connectivité. Aujourd’hui la communauté scientifique semble se retrouver sur des théories qui relient l’émergence des plis à l’organisation cytoarchitectonique et fonctionnelle du cortex. Nous avons développé une hypothèse de plissement prenant également en compte le stress mécanique engendré par la croissance des tissus ainsi que son rôle dans une possible rétro-action mécanique des plis sur l’organisation interne du cortex. Grâce à son développement en partie post-natal, le furet apparait comme un modèle animal idéal pour l’étude de l’organisation et du plissement cortical. A partir de données d’IRM structurales, nous avons segmenté et reconstruit en trois dimensions les surfaces piale et interne du cortex de 28 cerveaux de furets, afin de mener des analyses de surface et d’épaisseur corticale. Par une description anatomique précise du plissement du cortex du furet, basée sur l’étude de cartes de courbure, nous montrons la présence inattendue de plis déjà au 4ème jour après la naissance (P4). Par ailleurs, l’analyse longitudinale du plissement du cortex à partir d’algorithmes de recalage, suggère un gradient rostro-caudal dans la croissance de la surface corticale qui pourrait être impliqué dans la gyrification. En effet, les aires corticales les plus rostrales, plus grandes, et plus plissées à l’âge adulte, semblent croitre plus tôt et plus vite au cours du développement, en comparaison avec les régions caudales plus petites, et moins plissées chez l’adulte. L’analyse de l’épaisseur corticale révèle une corrélation entre l’épaisseur du cortex et la localisation des gyri et sulci. Cependant cette corrélation n’apparait qu’à partir du 8ème jour après la naissance, soit après la formation des plis à P4. L’ensemble de nos résultats suggère donc un possible effet mécanique du plissement du cortex sur son épaisseur, et donc potentiellement sur son organisation cytoarchitectonique et sa connectivité. / The human neocortex is highly folded. Its folding pattern has been associated with neurodevelopmental conditions, like autism or schizophrenia. It is still difficult, however, to understand what theses differences may imply, beyond being a marker of underlying variations in cortical organization. During development, folds appear during the last semester of gestation in human, synchronously with connective development. Nowadays, researchers recognize the existence of a relationship between the geometry of neocortical folds, and its cytoarchitectonic and functional organization. We have developed a hypothesis considering the role that mechanical stress can play in the determination of neocortical organization. The ferret appears as an ideal animal model to study the link between folding and cortical organization, as both processes in the ferret take place after birth. We segmented and reconstructed the pial and white matter cortical surfaces from 28 ferret brain structural MR images, and used them for surface and cortical thickness analysis. We highlight an unexpected significant presence of folds at postnatal day 4 (P4), on curvature maps of the pial surface. Besides, longitudinal analyses of the pial folding using meshes registration suggest the presence of a gradient in surface expansion that can be related to gyrification. The larger rostral areas — that turn to be more folded in adult brains — seem to expand earlier and faster than caudal regions with smaller surface area. In cortical thickness analysis, the correlation between pial surface curvature and thickness reveals a variation of cortical thickness in gyri and sulci. However, this correlation appears after postnatal day 8, thus after the emergence of folds around P4.Together, our results suggest a possible mechanical causal effect of folding on the thickening of the cortex and on its cytoarchitectonic and connective development.
298

Finite element analysis of the axial folding bridge

Laux, Christopher D. 16 February 2010 (has links)
<p>The U.S. Army needs a Heavy Dry Support Bridge (HDSB) that can support the Military Load Class (MLC) 96 Heavy Equipment Transporter (HET) tractor trailer carrying an M-I Tank. An existing Axial Folding Bridge (AFB), which was originally designed for MLC 70 loading, has been proposed for load upgrade to demonstrate the feasibility of achieving MLC 96 capacity. This report reviews the upgrade, a finite element model of the bridge, and the actual testing of the bridge to verify the model.</p> <p> The bridge was modeled using the Structural Analysis and Design/Integrated Structural Design System (STAAD-III/ISDS) finite element analysis software. The analysis demonstrated that the existing bridge could be upgraded by simply bolting flat, thin plate elen1ents to the bottom chord of the structure using existing pin plate connector bolt holes and longer bolts. These plates effectively stiffen the bridge structure and maintain a stress level for all elements of the bridge that is no higher for the MLC 96 loading than was experienced for the unrein forced MLC 70 base structure. The modification added 208.7 kg per center section, or an increase in weight of 4.6%, for an increase in load capacity of 37%.</p> <p> A working load static test was conducted on a modified bridge. Four hydraulic actuators applied incremental loading on the bridge. Strain gauge and deflection data were recorded and compared to the analytical model. The model proved to be more flexible than the bridge, but the data showed good correlation in terms of stress ratios between various members. Stress levels were acceptable for the given loading, demonstrating that MLC 96 had successfully been achieved on the bridge.</p> / Master of Science
299

Computational Chemistry with RNA Secondary Structures

Flamm, Christoph, Hofacker, Ivo L., Stadler, Peter F. 07 January 2019 (has links)
The secondary structure for nucleic acids provides a level of description that is both abstract enough to allow for efficient algorithms and realistic enough to provide a good approximate to the thermodynamic and kinetics properties of RNA structure formation. The secondary structure model has furthermore been successful in explaining salient features of RNA evolution in nature and in the test tube. In this contribution we review the computational chemistry of RNA secondary structures using a simplified algorithmic approach for explanation.
300

Monitoring dynamics of protein nascent chain on the ribosome using PET-FCS

Liutkute, Marija 18 May 2021 (has links)
No description available.

Page generated in 0.2671 seconds