• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of electronic systems for ultrasonic particle manipulation

Wang, Han January 2015 (has links)
Demands to handle individual particles or particle agglomerates have been emerging in the fields of biology and chemistry, and particle trapping and manipulation with mechanical waves generated from ultrasound sources, known as “acoustic tweezing”, has gained great interest by researchers and been proved useful for its unique advantages. With an analogy to optical tweezing, research has demonstrated the possibility to use modulated acoustic fields generated by ultrasound arrays for trapping individual particles and groups of particles at length scales from hundreds of µm to a few mm. This thesis explores and demonstrates particle trapping and manipulation with electronically-controlled miniaturized ultrasound arrays (element pitch around 500 µm or less), focusing on the development of dexterous electronic systems. Generally, in acoustic manipulation applications, low voltage outputs with continuous mode operation are required to create stable acoustic energy potential “landscapes” for trapping without damaging particles or cells. The research work of this thesis is oriented towards integration of control electronics with miniaturized ultrasound arrays. Test fixtures have been carefully designed and fabricated for the characterization of transducer arrays developed by collaborating researchers and array-controlled particle manipulation experiments have been demonstrated with customized fluorescence microscopy equipment. Most importantly, this thesis has established two versions of prototype Field programmable gate array (FPGA) based electronics to drive ultrasound arrays. One is a computer-controlled 16-channel system, with adjustable output frequencies, phases and amplitudes. Another is a 40-channel switching electronics for manual controlled output switching or time-shared output multiplexing. The electronic systems that have been developed are highly scalable and easily adapted for different acoustic tweezing applications. In conclusion, this thesis has proposed prototype electronic toolkits as research platforms to explore diverse possibilities for acoustic tweezing with miniaturized ultrasound arrays.
2

Highly Multiplexed Superconducting Detectors and Readout Electronics for Balloon-Borne and Ground-Based Far-Infrared Imaging and Polarimetry

January 2019 (has links)
abstract: This dissertation details the development of an open source, frequency domain multiplexed (FDM) readout for large-format arrays of superconducting lumped-element kinetic inductance detectors (LEKIDs). The system architecture is designed to meet the requirements of current and next generation balloon-borne and ground-based submillimeter (sub-mm), far-infrared (FIR) and millimeter-wave (mm-wave) astronomical cameras, whose science goals will soon drive the pixel counts of sub-mm detector arrays from the kilopixel to the megapixel regime. The in-flight performance of the readout system was verified during the summer, 2018 flight of ASI's OLIMPO balloon-borne telescope, from Svalbard, Norway. This was the first flight for both LEKID detectors and their associated readout electronics. In winter 2019/2020, the system will fly on NASA's long-duration Balloon Borne Large Aperture Submillimeter Telescope (BLAST-TNG), a sub-mm polarimeter which will map the polarized thermal emission from cosmic dust at 250, 350 and 500 microns (spatial resolution of 30", 41" and 59"). It is also a core system in several upcoming ground based mm-wave instruments which will soon observe at the 50 m Large Millimeter Telescope (e.g., TolTEC, SuperSpec, MUSCAT), at Sierra Negra, Mexico. The design and verification of the FPGA firmware, software and electronics which make up the system are described in detail. Primary system requirements are derived from the science objectives of BLAST-TNG, and discussed in the context of relevant size, weight, power and cost (SWaP-C) considerations for balloon platforms. The system was used to characterize the instrumental performance of the BLAST-TNG receiver and detector arrays in the lead-up to the 2019/2020 flight attempt from McMurdo Station, Antarctica. The results of this characterization are interpreted by applying a parametric software model of a LEKID detector to the measured data in order to estimate important system parameters, including the optical efficiency, optical passbands and sensitivity. The role that magnetic fields (B-fields) play in shaping structures on various scales in the interstellar medium is one of the central areas of research which is carried out by sub-mm/FIR observatories. The Davis-Chandrasekhar-Fermi Method (DCFM) is applied to a BLASTPol 2012 map (smoothed to 5') of the inner ~1.25 deg2 of the Carina Nebula Complex (CNC, NGC 3372) in order to estimate the strength of the B-field in the plane-of-the-sky (B-pos). The resulting map contains estimates of B-pos along several thousand sightlines through the CNC. This data analysis pipeline will be used to process maps of the CNC and other science targets which will be produced during the upcoming BLAST-TNG flight. A target selection survey of five nearby external galaxies which will be mapped during the flight is also presented. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2019

Page generated in 0.1171 seconds