• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transcriptional Suppression of miR-29b-1/miR-29a Promoter by c-Myc, Hedgehog, and NF-kappaB

Mott, Justin L., Kurita, Satoshi, Cazanave, Sophie C., Bronk, Steven F., Werneburg, Nathan W., Fernandez-Zapico, Martin E. 01 August 2010 (has links)
MicroRNAs regulate pathways contributing to oncogenesis, and thus the mechanisms causing dysregulation of microRNA expression in cancer are of significant interest. Mature mir-29b levels are decreased in malignant cells, and this alteration promotes the malignant phenotype, including apoptosis resistance. However, the mechanism responsible for mir-29b suppression is unknown. Here, we examined mir-29 expression from chromosome 7q32 using cholangiocarcinoma cells as a model for mir-29b downregulation. Using 5′ rapid amplification of cDNA ends, the transcriptional start site was identified for this microRNA locus. Computational analysis revealed the presence of two putative E-box (Myc-binding) sites, a Gli-binding site, and four NF-κB-binding sites in the region flanking the transcriptional start site. Promoter activity in cholangiocarcinoma cells was repressed by transfection with c-Myc, consistent with reports in other cell types. Treatment with the hedgehog inhibitor cyclopamine, which blocks smoothened signaling, increased the activity of the promoter and expression of mature mir-29b. Mutagenesis analysis and gel shift data are consistent with a direct binding of Gli to the mir-29 promoter. Finally, activation of NF-κB signaling, via ligation of Toll-like receptors, also repressed mir-29b expression and promoter function. Of note, activation of hedgehog, Toll-like receptor, and c-Myc signaling protected cholangiocytes from TRAIL-induced apoptosis. Thus, in addition to c-Myc, mir-29 expression can be suppressed by hedgehog signaling and inflammatory pathways, both commonly activated in the genesis of human malignancies.

Page generated in 0.0137 seconds