• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fatigue Crack Growth Analyses and Experimental Verification of Aerospace Threaded Fasteners

Olsen, Kirk William, P.E. 28 May 2004 (has links)
No description available.
2

Thermo-mechanical fatigue crack propagation in a single-crystal turbine blade

Koernig, Andreas, Andersson, Nicke January 2016 (has links)
Simulation of crack growth in the internal cooling system of a blade in a Siemens gas turbine has been studied by inserting and propagating cracks at appropriate locations. The softwares used are ABAQUS and FRANC3D, where the latter supports finite element meshing of a crack and calculation of the stress intensities along the crack front based on the results from an external finite element program. The blade is subjected to thermo-mechanical fatigue and the cracks are grown subjected to in-phase loading conditions.   The material of the blade is STAL15SX, a nickel-base single-crystal superalloy. The <001> crystalline direction is aligned with the loading direction of the blade, while the secondary crystalline directions are varied to examine how it affects the thermo-mechanical crack propagation fatigue life of the blade.   The finite element model is set up using a submodeling technique to reduce the computational time for the simulations. Investigations to validate the submodeling technique are conducted.   From the work it can be concluded that a crack located at a critical location in the cooling lattice reach above the crack propagation target life. Cracks located at noncritical locations have crack propagation lives of a factor 5.2 times the life of the critical crack.

Page generated in 0.0168 seconds