• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sensitivity Analysis of the Forest Vegetation Simulator Southern Variant (FVS-Sn)for Southern Appalachian Hardwoods

Herring, Nathan Daniel 20 August 2007 (has links)
The FVS-Sn model was developed by the USDA Forest Service to project and report forest growth and yield predictions for the Southern United States. It is able to project forest growth and yield for different forest types and management prescriptions, but it is a relatively new, complex, and untested model. These limitations notwithstanding, FVS-Sn once tested and validated could meet the critical need of a comprehensive growth and yield model for the mixed hardwood forests of the southern Appalachian region. In this study, sensitivity analyses were performed on the FVS-Sn model using Latin hypercube sampling. Response surfaces were fitted to determine the magnitudes and directions of relationships between FVS-Sn model parameters and predicted 10-year basal area increment. Model sensitivities were calculated for five different test scenarios for both uncorrelated and correlated FVS-Sn input parameters and sub-models. Predicted 10-year basal area increment was most sensitive to parameters and sub-models related to the stand density index and, to a lesser degree, the large tree diameter growth sub-model. The testing procedures and framework developed in this study will serve as a template for further evaluation of FVS-Sn, including a comprehensive assessment of model uncertainties, followed by a recalibration for southern Appalachian mixed hardwood forests. / Master of Science

Page generated in 0.0217 seconds