• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of scattered coherent light and photoacoustic imaging : toward light focusing in deep tissue and enhanced, sub-acoustic resolution photoacoustic imaging / Contrôle de la lumière cohérente diffusée et imagerie photoacoustique : focalisation de la lumière en profondeur dans les tissus biologiques et imagerie photoacoustique améliorée avec résolution sub-acoustique

Chaigne, Thomas 07 January 2016 (has links)
En microscopie, savoir focaliser la lumière à l’échelle micrométrique est déterminant. Dans les tissus biologiques néanmoins, les inhomogénéités du milieu diffusent la lumière, empêchant toute focalisation au-delà d’une profondeur de l’ordre du millimètre. Des techniques de façonnage de front d’onde ont été développées afin de pré-compenser la distorsion du faisceau lumineux induite par la propagation à travers un milieu diffusant. Pour parvenir à focaliser la lumière à l’intérieur même du milieu diffusant, l’enjeu est de mesurer l’intensité lumineuse en profondeur de manière non invasive. Nous proposons d’utiliser l’effet photoacoustique pour sonder cette intensité. Une structure optiquement absorbante éclairée par une impulsion lumineuse émet en effet un signal ultrasonore, dont l’amplitude est proportionnelle à l’intensité lumineuse. Ces ultrasons se propagent de façon quasi-balistique dans les tissus mous et peuvent donc être détectés à l’aide d’un transducteur acoustique externe. Cette mesure permet donc de déterminer l’intensité lumineuse éclairant l’absorbeur. Nous avons montré qu’il était possible d’utiliser l'imagerie photoacoustique pour mesurer la matrice de transmission d’un échantillon diffusant. Cette caractérisation nous permet de focaliser la lumière sur des structures absorbantes et de sonder des propriétés mésoscopiques du milieu diffusant. Nous avons montré que la large bande spectrale des signaux photoacoustiques permet d’améliorer la focalisation. Enfin, nous avons montré que l’utilisation d’une source de lumière cohérente permet de pallier certains artefacts de l’imagerie photoacoustique, ainsi que de franchir la limite de résolution acoustique. / Light focusing is a crucial requirement for high resolution optical imaging. In biological tissue though, refractive index inhomogeneities scatter light, preventing any focusing beyond one millimeter. Wavefront shaping techniques have been recently developed to partially compensate for light scattering after propagation through a scattering medium. These techniques require a measurement of the light intensity at the target point. These techniques hold much promise for performing wavefront correction in order to focus light deep inside scattering media. This would require a non-invasive measure of the light intensity at depth. In this PhD study, we propose to use the photoacoustic effect for such task. An optically absorbing structure under pulsed illumination indeed generates ultrasonic waves, whose amplitude is proportional to the absorbed light intensity. These ultrasounds mostly propagate in a ballistic way, and can therefore be detected with an external transducer. We have shown that photoacoustic imaging could be used to measure the transmission matrix of a scattering sample, enabling to focus light on absorbing structures as well as to retrieve mesoscopic properties of the medium. We have shown that the broadband spectral content of the photoacoustic signals can be harnessed to improve the focusing performances. Finally, we demonstrated that coherent illumination could be used to remove fundamentals artefacts, as well as to break the acoustic resolution limit of conventional deep tissue photoacoustic imaging.
2

Matricial approaches for spatio-temporal control of light in multiple scattering media / Approches matricielles pour le contrôle spatio-temporel de la lumière dans des milieux de diffusion multiples

Mounaix, Mickaël 08 November 2017 (has links)
L’imagerie optique à travers des milieux diffusants, comme des milieux biologiques ou de la peinture blanche, reste un challenge car l’information spatiale portée par la lumière incidente est mélangée par les évènements multiples de diffusion. Toutefois, les modulateurs spatiaux de lumière (SLM) disposent de millions de degrés de liberté pour contrôler le profil spatial de la lumière en sortie du milieu, en forme de tavelure (speckle), avec des techniques de modulation du front d’onde. Cependant, si le laser génère une impulsion brève, le signal transmis s’allonge temporellement, car le milieu diffusant répond différemment pour les diverses composantes spectrales de l’impulsion. Nous avons développé, au cours de cette thèse, des méthodes de contrôle du profil spatiotemporel d’une impulsion brève transmise à travers un milieu diffusant. En mesurant la Matrice de Transmission Multi-Spectrale ou Résolue-Temporellement, la propagation de l’impulsion peut être totalement décrite dans le domaine spectral ou temporel. Avec des techniques de manipulation du front d’onde, les degrés de libertés spectraux/temporel peuvent être ajustés avec un unique SLM via la diversité spectrale du milieu diffusant. Nous avons démontré, de manière déterministe, la focalisation spatio-temporelle d’une impulsion brève après propagation dans un milieu diffusant, avec une compression temporelle proche de la durée initiale de l’impulsion, à différentes positions de l’espace-temps. Nous avons également démontré un façonnage contrôlé du profil temporel de l’impulsion, notamment avec la génération d’impulsions doubles. Nous exploitons cette focalisation spatio-temporelle pour exciter un processus optique non-linéaire, la fluorescence à deux photons. Cette approche ouvre des perspectives intéressantes pour le contrôle cohérent, l’étude de l’interaction lumière-matière ainsi que l’imagerie multi-photonique. / Optical imaging through highly disordered media such as biological tissue or white paint remains a challenge as spatial information gets mixed because of multiple scattering. Nonetheless, spatial light modulators (SLM) offer millions of degrees of freedom to control the spatial speckle pattern at the output of a disordered medium with wavefront shaping techniques. However, if the laser generates a broadband ultrashort pulse, the transmitted signal becomes temporally broadened as the medium responds disparately for the different spectral components of the pulse. We have developed methods to control the spatio-temporal profile of the pulse at the output of a thick scattering medium. By measuring either the Multispectral or the Time- Resolved Transmission Matrix, we can fully describe the propagation of the broadband pulse either in the spectral or temporal domain. With wavefront shaping techniques, one can control both spatial and spectral/temporal degrees of freedom with a single SLM via the spectral diversity of the scattering medium. We have demonstrated deterministic spatio-temporal focusing of an ultrashort pulse of light after the medium, with a temporal compression almost to its initial time-width in different space-time position, as well as different temporal profile such as double pulses. We exploit this spatio-temporal focusing beam to enhance a non-linear process that is two-photon excitation. It opens interesting perspectives in coherent control, light-matter interactions and multiphotonic imaging.

Page generated in 0.1079 seconds