Spelling suggestions: "subject:"face detector"" "subject:"face etector""
1 |
A neural network face detector design using bit-width reduced FPU in FPGALee, Yongsoon 05 February 2007
This thesis implemented a field programmable gate array (FPGA)-based face detector using a neural network (NN), as well as a bit-width reduced floating-point unit (FPU). An NN was used to easily separate face data and non-face data in the face detector. The NN performs time consuming repetitive calculation. This time consuming problem was solved by a Field Programmable Gate Array (FPGA) device and a bit-width reduced FPU in this thesis. A floating-point bit-width reduction provided a significant saving of hardware resources, such as area and power.<p>The analytical error model, using the maximum relative representation error (MRRE) and the average relative representation error (ARRE), was developed to obtain the maximum and average output errors for the bit-width reduced FPUs. After the development of the analytical error model, the bit-width reduced FPUs and an NN were designed using MATLAB and VHDL. Finally, the analytical (MATLAB) results, along with the experimental (VHDL) results, were compared. The analytical results and the experimental results showed conformity of shape. It was also found that while maintaining 94.1% detection accuracy, a reduction in bit-width from 32 bits to 16 bits reduced the size of memory and arithmetic units by 50%, and the total power consumption by 14.7%.
|
2 |
A neural network face detector design using bit-width reduced FPU in FPGALee, Yongsoon 05 February 2007 (has links)
This thesis implemented a field programmable gate array (FPGA)-based face detector using a neural network (NN), as well as a bit-width reduced floating-point unit (FPU). An NN was used to easily separate face data and non-face data in the face detector. The NN performs time consuming repetitive calculation. This time consuming problem was solved by a Field Programmable Gate Array (FPGA) device and a bit-width reduced FPU in this thesis. A floating-point bit-width reduction provided a significant saving of hardware resources, such as area and power.<p>The analytical error model, using the maximum relative representation error (MRRE) and the average relative representation error (ARRE), was developed to obtain the maximum and average output errors for the bit-width reduced FPUs. After the development of the analytical error model, the bit-width reduced FPUs and an NN were designed using MATLAB and VHDL. Finally, the analytical (MATLAB) results, along with the experimental (VHDL) results, were compared. The analytical results and the experimental results showed conformity of shape. It was also found that while maintaining 94.1% detection accuracy, a reduction in bit-width from 32 bits to 16 bits reduced the size of memory and arithmetic units by 50%, and the total power consumption by 14.7%.
|
3 |
Suivi visuel multi-cibles par partitionnement de détections : application à la construction d'albums de visages / Visual tracking multi-target detections by partitioning : Application to construction albums of facesSchwab, Siméon 08 July 2013 (has links)
Ce mémoire décrit mes travaux de thèse menés au sein de l'équipe ComSee (Computers that See) rattachée à l'axe ISPR (Image, Systèmes de Perception et Robotique) de l'Institut Pascal. Celle-ci a été financée par la société Vesalis par le biais d'une convention CIFRE avec l'Institut Pascal, subventionnée par l'ANRT (Association Nationale de la Recherche et de la Technologie). Les travaux de thèse s'inscrivent dans le cadre de l'automatisation de la fouille d'archives vidéo intervenant lors d'enquêtes policières. L'application rattachée à cette thèse concerne la création automatique d'un album photo des individus apparaissant sur une séquence de vidéosurveillance. En s'appuyant sur un détecteur de visages, l'objectif est de regrouper par identité les visages détectés sur l'ensemble d'une séquence vidéo. Comme la reconnaissance faciale en environnement non-contrôlé reste difficilement exploitable, les travaux se sont orientés vers le suivi visuel multi-cibles global basé détections. Ce type de suivi est relativement récent. Il fait intervenir un détecteur d'objets et traite la vidéo dans son ensemble (en opposition au traitement séquentiel couramment utilisé). Cette problématique a été représentée par un modèle probabiliste de type Maximum A Posteriori. La recherche de ce maximum fait intervenir un algorithme de circulation de flot sur un graphe, issu de travaux antérieurs. Ceci permet l'obtention d'une solution optimale au problème (défini par l'a posteriori) du regroupement des détections pour le suivi. L'accent a particulièrement été mis sur la représentation de la similarité entre les détections qui s'intègre dans le terme de vraisemblance du modèle. Plusieurs mesures de similarités s'appuyant sur différents indices (temps, position dans l'image, apparence et mouvement local) ont été testées. Une méthode originale d'estimation de ces similarités entre les visages détectés a été développée pour fusionner les différentes informations et s'adapter à la situation rencontrée. Plusieurs expérimentations ont été menées sur des situations complexes, mais réalistes, de scènes de vidéosurveillance. Même si les qualités des albums construits ne satisfont pas encore à une utilisation pratique, le système de regroupement de détections mis en œuvre au cours de cette thèse donne déjà une première solution. Grâce au point de vue partitionnement de données adopté au cours de cette thèse, le suivi multi-cibles développé permet une extension simple à du suivi autre que celui des visages. / This report describes my thesis work conducted within the ComSee (Computers That See) team related to the ISPR axis (ImageS, Perception Systems and Robotics) of Institut Pascal. It was financed by the Vesalis company via a CIFRE (Research Training in Industry Convention) agreement with Institut Pascal and publicly funded by ANRT (National Association of Research and Technology). The thesis was motivated by issues related to automation of video analysis encountered during police investigations. The theoretical research carried out in this thesis is applied to the automatic creation of a photo album summarizing people appearing in a CCTV sequence. Using a face detector, the aim is to group by identity all the faces detected throughout the whole video sequence. As the use of facial recognition techniques in unconstrained environments remains unreliable, we have focused instead on global multi-target tracking based on detections. This type of tracking is relatively recent. It involves an object detector and global processing of the video (as opposed to sequential processing commonly used). This issue has been represented by a Maximum A Posteriori probabilistic model. To find an optimal solution of Maximum A Posteriori formulation, we use a graph-based network flow approach, built upon third-party research. The study concentrates on the definition of inter-detections similarities related to the likelihood term of the model. Multiple similarity metrics based on different clues (time, position in the image, appearance and local movement) were tested. An original method to estimate these similarities was developed to merge these various clues and adjust to the encountered situation. Several experiments were done on challenging but real-world situations which may be gathered from CCTVs. Although the quality of generated albums do not yet satisfy practical use, the detections clustering system developed in this thesis provides a good initial solution. Thanks to the data clustering point of view adopted in this thesis, the proposed detection-based multi-target tracking allows easy transfer to other tracking domains.
|
4 |
Methods for face detection and adaptive face recognitionPavani, Sri-Kaushik 21 July 2010 (has links)
The focus of this thesis is on facial biometrics; specifically in the problems of face detection and face recognition. Despite intensive research over the last 20 years, the technology is not foolproof, which is why we do not see use of face recognition systems in critical sectors such as banking. In this thesis, we focus on three sub-problems in these two areas of research. Firstly, we propose methods to improve the speed-accuracy trade-off of the state-of-the-art face detector. Secondly, we consider a problem that is often ignored in the literature: to decrease the training time of the detectors. We propose two techniques to this end. Thirdly, we present a detailed large-scale study on self-updating face recognition systems in an attempt to answer if continuously changing facial appearance can be learnt automatically. / L'objectiu d'aquesta tesi és sobre biometria facial, específicament en els problemes de detecció de rostres i reconeixement facial. Malgrat la intensa recerca durant els últims 20 anys, la tecnologia no és infalible, de manera que no veiem l'ús dels sistemes de reconeixement de rostres en sectors crítics com la banca. En aquesta tesi, ens centrem en tres sub-problemes en aquestes dues àrees de recerca. En primer lloc, es proposa mètodes per millorar l'equilibri entre la precisió i la velocitat del detector de cares d'última generació. En segon lloc, considerem un problema que sovint s'ignora en la literatura: disminuir el temps de formació dels detectors. Es proposen dues tècniques per a aquest fi. En tercer lloc, es presenta un estudi detallat a gran escala sobre l'auto-actualització dels sistemes de reconeixement facial en un intent de respondre si el canvi constant de l'aparença facial es pot aprendre de forma automàtica.
|
Page generated in 0.0523 seconds