Spelling suggestions: "subject:"face recognition"" "subject:"race recognition""
121 |
Adaptive frame selection for enhanced face recognition in low-resolution videosJillela, Raghavender Reddy. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2008. / Title from document title page. Document formatted into pages; contains viii, 67 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 62-67).
|
122 |
Feature level fusion in multimodal biometricsGovindarajan, Rohin K. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2004. / Title from document title page. Document formatted into pages; contains xiii, 107 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 101-107).
|
123 |
Assessment of super-resolution for face recognition from very-low resolution imagesRoeder, James Roger, January 2009 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2009. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
|
124 |
Estimation of image quality factors for face recognitionAkinbola, Akintunde A. January 2005 (has links)
Thesis (M.S.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains vi, 56 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 52-56).
|
125 |
Topological properties of a network of spiking neurons in face image recognitionShin, Joo-Heon. January 1900 (has links)
Thesis (Ph.D.)--Virginia Commonwealth University, 2010. / Prepared for: Dept. of Computer Science. Title from title-page of electronic thesis. Bibliography: leaves 64-72.
|
126 |
Parts-based object detection using multiple views /Higgs, David Robert. January 2005 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2005. / Typescript. Includes bibliographical references (leaves 71-74).
|
127 |
Synthesis and analysis of human faces using multi-view, multi-illumination image ensemblesLee, Jinho, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Includes bibliographical references (p. 116-120).
|
128 |
An analysis of the metrical and morphological features of South African black males for the purpose of facial identificationRoelofse, Michelle Marizan January 2006 (has links)
Thesis (MSc.(Anatomy)--Faculty of Health Sciences)-University of Pretoria, 2006. / Includes bibliographical references.
|
129 |
Error weighted classifier combination for multi-modal human identificationIvanov, Yuri, Serre, Thomas, Bouvrie, Jacob 14 December 2005 (has links)
In this paper we describe a technique of classifier combination used in a human identification system. The system integrates all available features from multi-modal sources within a Bayesian framework. The framework allows representinga class of popular classifier combination rules and methods within a single formalism. It relies on a Âper-class measure of confidence derived from performance of each classifier on training data that is shown to improve performance on a synthetic data set. The method is especially relevant in autonomous surveillance setting where varying time scales and missing features are a common occurrence. We show an application of this technique to the real-world surveillance database of video and audio recordings of people collected over several weeks in the office setting.
|
130 |
Υλοποίηση αλγορίθμου αναγνώρισης προσώπου (face recognition) σε έξυπνη κάμεραΠαναγιωτόπουλος, Λεωνίδας 04 October 2011 (has links)
Ο σκοπός της διπλωματικής εργασίας ήταν η βελτιστοποίηση ενός αλγορίθμου αναγνώρισης ανθρώπινων προσώπων και η εφαρμογή του σε μια έξυπνη κάμερα. Για την αναγνώριση των προσώπων χρησιμοποιήσαμε τον αλγόριθμο PCA ( Αλγόριθμος ανάλυσης κύριων συνιστωσών ). Η εφαρμογή του αλγορίθμου έγινε σε μια εργαστηριακή έξυπνη κάμερα εξοπλισμένη με τον επεξεργαστή LEON 2 όπως επίσης και με ενσωματωμένη μνήμη Sdram μεγέθους 16Mbytes.
Η βελτιστοποίηση του αλγορίθμου έγινε με γνώμονα την δυνατότητα εφαρμογής του στην έξυπνη κάμερα. Έτσι η υλοποίηση έγινε αρχικά στο περιβάλλον Matlab στην συνέχεια υλοποιήθηκε σε C γλώσσα προγραμματισμού ενώ τέλος εφαρμόστηκε, μετά από κατάλληλες παραμετροποιήσεις, στην έξυπνη κάμερα. Η έξυπνη κάμερα είναι δυνατόν να καταγράφει και να αναγνωρίζει πρόσωπα με ικανοποιητική ακρίβεια, σε χρόνο μικρότερο του ενός δευτερολέπτου.
Τα αποτελέσματα ήταν αρκετά ικανοποιητικά καθώς η κάμερα μπορεί και αναγνωρίζει συγκεκριμένα πρόσωπα, μέσα από ένα σύνολο ανθρώπων που παρακολουθεί. Κύριο πλεονέκτημα της υλοποίησης είναι η μεταφερσιμότητά της που την καθιστά εύχρηστη σε πολλές εφαρμογές που απαιτούν αναγνώριση προσώπων, καθώς επίσης θα μπορούσε να αποτελέσει την βάση για επιπλέον εφαρμογές που θα αποσκοπούσαν στην αναγνώριση διαφορετικών ειδώλων. / The propose of this thesis was the optimizing of an algorithm for Face Recognition, and the implementation of this algorithm to a smart camera. In order to identify the Faces we use the PCA algorithm (Principal Component Analysis) . The implementation of the algorithm was done in a laboratory smart camera, equipped with a LEON2 processor as well as embedded 16Mbytes Sdram memory.
The optimization of the algorithm was based on the applicability in the smart camera. This implementation was done originally in Matlab environment, then implemented in C programming code and after the appropriate configurations applied to the smart camera. The smart camera can record and recognize faceswith sufficient accuracy, in less than one second.
The results were quite good as the camera can also recognize individual Faces within a group of observed people. Main advantage of the implementation is the portability, which makes it useful in many applications that require identification of persons. Also could be the basis for further applications aimed at identifying different kind of images.
|
Page generated in 0.0868 seconds