• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 35
  • 13
  • 6
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 155
  • 155
  • 56
  • 41
  • 37
  • 32
  • 31
  • 24
  • 24
  • 24
  • 24
  • 23
  • 22
  • 21
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A Trainable System for Object Detection in Images and Video Sequences

Papageorgiou, Constantine P. 01 May 2000 (has links)
This thesis presents a general, trainable system for object detection in static images and video sequences. The core system finds a certain class of objects in static images of completely unconstrained, cluttered scenes without using motion, tracking, or handcrafted models and without making any assumptions on the scene structure or the number of objects in the scene. The system uses a set of training data of positive and negative example images as input, transforms the pixel images to a Haar wavelet representation, and uses a support vector machine classifier to learn the difference between in-class and out-of-class patterns. To detect objects in out-of-sample images, we do a brute force search over all the subwindows in the image. This system is applied to face, people, and car detection with excellent results. For our extensions to video sequences, we augment the core static detection system in several ways -- 1) extending the representation to five frames, 2) implementing an approximation to a Kalman filter, and 3) modeling detections in an image as a density and propagating this density through time according to measured features. In addition, we present a real-time version of the system that is currently running in a DaimlerChrysler experimental vehicle. As part of this thesis, we also present a system that, instead of detecting full patterns, uses a component-based approach. We find it to be more robust to occlusions, rotations in depth, and severe lighting conditions for people detection than the full body version. We also experiment with various other representations including pixels and principal components and show results that quantify how the number of features, color, and gray-level affect performance.
32

Learning and Example Selection for Object and Pattern Detection

Sung, Kah-Kay 13 March 1996 (has links)
This thesis presents a learning based approach for detecting classes of objects and patterns with variable image appearance but highly predictable image boundaries. It consists of two parts. In part one, we introduce our object and pattern detection approach using a concrete human face detection example. The approach first builds a distribution-based model of the target pattern class in an appropriate feature space to describe the target's variable image appearance. It then learns from examples a similarity measure for matching new patterns against the distribution-based target model. The approach makes few assumptions about the target pattern class and should therefore be fairly general, as long as the target class has predictable image boundaries. Because our object and pattern detection approach is very much learning-based, how well a system eventually performs depends heavily on the quality of training examples it receives. The second part of this thesis looks at how one can select high quality examples for function approximation learning tasks. We propose an {em active learning} formulation for function approximation, and show for three specific approximation function classes, that the active example selection strategy learns its target with fewer data samples than random sampling. We then simplify the original active learning formulation, and show how it leads to a tractable example selection paradigm, suitable for use in many object and pattern detection problems.
33

Example Based Learning for View-Based Human Face Detection

Sung, Kah Kay, Poggio, Tomaso 24 January 1995 (has links)
We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based "face'' and "non-face'' prototype clusters. At each image location, the local pattern is matched against the distribution-based model, and a trained classifier determines, based on the local difference measurements, whether or not a human face exists at the current image location. We provide an analysis that helps identify the critical components of our system.
34

Occupant Detection using Computer Vision

Klomark, Marcus January 2000 (has links)
The purpose of this master’s thesis was to study the possibility to use computer vision methods to detect and classify objects in the front passenger seat in a car. This work presents different approaches to solve this problem and evaluates the usefulness of each technique. The classification information should later be used to modulate the speed and the force of the airbag, to be able to provide each occupant with optimal protection and safety. This work shows that computer vision has a great potential in order to provide data, which may be used to perform reliable occupant classification. Future choice of method to use depends on many factors, for example costs and requirements on the system from laws and car manufacturers. Further, evaluation and tests of the methods in this thesis, other methods, the ABE approach and post-processing of the results should also be made before a reliable classification algorithm may be written.
35

Face Detection and Facial Feature Localization for multi-pose faces and complex backgroundimages

Kripakaran, Rolance January 2011 (has links)
The objective of this thesis work, is to propose an algorithm to detect the faces in a digital image with complex background. A lot of work has already been done in the area of face detection, but drawback of some face detection algorithms is the lack of ability to detect faces with closed eyes and open mouth. Thus facial features form an important basis for detection. The current thesis work focuses on detection of faces based on facial objects. The procedure is composed of three different phases: segmentation phase, filtering phase and localization phase. In segmentation phase, the algorithm utilizes color segmentation to isolate human skin color based on its chrominance properties. In filtering phase, Minkowski addition based object removal (Morphological operations) has been used to remove the non-skin regions. In the last phase, Image Processing and Computer Vision methods have been used to find the existence of facial components in the skin regions.This method is effective on detecting a face region with closed eyes, open mouth and a half profile face. The experiment’s results demonstrated that the detection accuracy is around 85.4% and the detection speed is faster when compared to neural network method and other techniques.
36

Face Detection and Pose Estimation using Triplet Invariants / Ansiktsdetektering med hjälp av triplet-invarianter

Isaksson, Marcus January 2002 (has links)
Face detection and pose estimation are two widely studied problems - mainly because of their use as subcomponents in important applications, e.g. face recognition. In this thesis I investigate a new approach to the general problem of object detection and pose estimation and apply it to faces. Face detection can be considered a special case of this general problem, but is complicated by the fact that faces are non-rigid objects. The basis of the new approach is the use of scale and orientation invariant feature structures - feature triplets - extracted from the image, as well as a biologically inspired associative structure which maps from feature triplets to desired responses (position, pose, etc.). The feature triplets are constructed from curvature features in the image and coded in a way to represent distances between major facial features (eyes, nose and mouth). The final system has been evaluated on different sets of face images.
37

Automatic and Adaptive Red Eye Detection and Removal : Investigation and Implementation

Samadzadegan, Sepideh January 2012 (has links)
Redeye artifact is the most prevalent problem in the flash photography, especially using compact cameras with built-in flash, which bothers both amateur and professional photographers. Hence, removing the affected redeye pixels has become an important skill. This thesis work presents a completely automatic approach for the purpose of redeye detection and removal and it consists of two modules: detection and correction of the redeye pixels in an individual eye, detection of two red eyes in an individual face.This approach is considered as a combination of some of the previous attempts in the area of redeye removal together with some minor and major modifications and novel ideas. The detection procedure is based on the redness histogram analysis followed by two adaptive methods, general and specific approaches, in order to find a threshold point. The correction procedure is a four step algorithm which does not solely rely on the detected redeye pixels. It also applies some more pixel checking, such as enlarging the search area and neighborhood checking, to improve the reliability of the whole procedure by reducing the image degradation risk. The second module is based on a skin-likelihood detection algorithm. A completely novel approach which is utilizing the Golden Ratio in order to segment the face area into some specific regions is implemented in the second module. The proposed method in this thesis work is applied on more than 40 sample images; by considering some requirements and constrains, the achieved results are satisfactory.
38

Real Time Driver Safety System

Cho, Gyuchoon 01 May 2009 (has links)
The technology for driver safety has been developed in many fields such as airbag system, Anti-lock Braking System or ABS, ultrasonic warning system, and others. Recently, some of the automobile companies have introduced a new feature of driver safety systems. This new system is to make the car slower if it finds a driver’s drowsy eyes. For instance, Toyota Motor Corporation announced that it has given its pre-crash safety system the ability to determine whether a driver’s eyes are properly open with an eye monitor. This paper is focusing on finding a driver’s drowsy eyes by using face detection technology. The human face is a dynamic object and has a high degree of variability; that is why face detection is considered a difficult problem in computer vision. Even with the difficulty of this problem, scientists and computer programmers have developed and improved the face detection technologies. This paper also introduces some algorithms to find faces or eyes and compares algorithm’s characteristics. Once we find a face in a sequence of images, the matter is to find drowsy eyes in the driver safety system. This system can slow a car or alert the user not to sleep; that is the purpose of the pre-crash safety system. This paper introduces the VeriLook SDK, which is used for finding a driver’s face in the real time driver safety system. With several experiments, this paper also introduces a new way to find drowsy eyes by AOI,Area of Interest. This algorithm improves the speed of finding drowsy eyes and the consumption of memory use without using any object classification methods or matching eye templates. Moreover, this system has a higher accuracy of classification than others.
39

A Neuro-Fuzzy Approach for Multiple Human Objects Segmentation

Huang, Li-Ming 03 September 2003 (has links)
We propose a novel approach for segmentation of human objects, including face and body, in image sequences. In modern video coding techniques, e.g., MPEG-4 and MPEG-7, human objects are usually the main focus for multimedia applications. We combine temporal and spatial information and employ a neuro-fuzzy mechanism to extract human objects. A fuzzy self-clustering technique is used to divide the video frame into a set of segments. The existence of a face within a candidate face region is ensured by searching for possible constellations of eye-mouth triangles and verifying each eye-mouth combination with the predefined template. Then rough foreground and background are formed based on a combination of multiple criteria. Finally, human objects in the base frame and the remaining frames of the video stream are precisely located by a fuzzy neural network which is trained by a SVD-based hybrid learning algorithm. Through experiments, we compare our system with two other approaches, and the results have shown that our system can detect face locations and extract human objects more accurately.
40

Face Detection and Pose Estimation using Triplet Invariants / Ansiktsdetektering med hjälp av triplet-invarianter

Isaksson, Marcus January 2002 (has links)
<p>Face detection and pose estimation are two widely studied problems - mainly because of their use as subcomponents in important applications, e.g. face recognition. In this thesis I investigate a new approach to the general problem of object detection and pose estimation and apply it to faces. Face detection can be considered a special case of this general problem, but is complicated by the fact that faces are non-rigid objects. The basis of the new approach is the use of scale and orientation invariant feature structures - feature triplets - extracted from the image, as well as a biologically inspired associative structure which maps from feature triplets to desired responses (position, pose, etc.). The feature triplets are constructed from curvature features in the image and coded in a way to represent distances between major facial features (eyes, nose and mouth). The final system has been evaluated on different sets of face images.</p>

Page generated in 0.0643 seconds