• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mixture of Factor Analyzers (MoFA) Models for the Design and Analysis of SAR Automatic Target Recognition (ATR) Algorithms

Abdel-Rahman, Tarek January 2017 (has links)
No description available.
2

Variational Approximations and Other Topics in Mixture Models

Dang, Sanjeena 24 August 2012 (has links)
Mixture model-based clustering has become an increasingly popular data analysis technique since its introduction almost fifty years ago. Families of mixture models are said to arise when the component parameters, usually the component covariance matrices, are decomposed and a number of constraints are imposed. Within the family setting, it is necessary to choose the member of the family --- i.e., the appropriate covariance structure --- in addition to the number of mixture components. To date, the Bayesian information criterion (BIC) has proved most effective for this model selection process, and the expectation-maximization (EM) algorithm has been predominantly used for parameter estimation. We deviate from the EM-BIC rubric, using variational Bayes approximations for parameter estimation and the deviance information criterion (DIC) for model selection. The variational Bayes approach alleviates some of the computational complexities associated with the EM algorithm. We use this approach on the most famous family of Gaussian mixture models known as Gaussian parsimonious clustering models (GPCM). These models have an eigen-decomposed covariance structure. Cluster-weighted modelling (CWM) is another flexible statistical framework for modelling local relationships in heterogeneous populations on the basis of weighted combinations of local models. In particular, we extend cluster-weighted models to include an underlying latent factor structure of the independent variable, resulting in a novel family of models known as parsimonious cluster-weighted factor analyzers. The EM-BIC rubric is utilized for parameter estimation and model selection. Some work on a mixture of multivariate t-distributions is also presented, with a linear model for the mean and a modified Cholesky-decomposed covariance structure leading to a novel family of mixture models. In addition to model-based clustering, these models are also used for model-based classification, i.e., semi-supervised clustering. Parameters are estimated using the EM algorithm and another approach to model selection other than the BIC is also considered. / NSERC PGS-D
3

Two Bayesian learning approaches to image processing / Traitement d’images par deux approches d’apprentissage Bayésien

Wang, Yiqing 02 March 2015 (has links)
Cette thèse porte sur deux méthodes à patch en traitement d’images dans le cadre de minimisation du risque Bayésien. Nous décrivons un mélange d’analyses factorielles pour modéliser la loi à priori des patchs dans une seule image et l’appliquons au débruitage et à l’inpainting. Nous étudions aussi les réseaux de neurones à multi-couches d’un point de vue probabiliste comme un outil permettant d’approcher l’espérance conditionnelle, ce qui ouvre quelques voies pour réduire leurs tailles et coût d’apprentissage. / This work looks at two patch based image processing methods in a Bayesian risk minimization framework. We describe a Gaussian mixture of factor analyzers for local prior modelling and apply it in the context of image denoising and inpainting. We also study multilayer neural networks from a probabilistic perspective as a tool for conditional expectation approximation, which suggests ways to reduce their sizes and training cost.
4

Mixture of Factor Analyzers with Information Criteria and the Genetic Algorithm

Turan, Esra 01 August 2010 (has links)
In this dissertation, we have developed and combined several statistical techniques in Bayesian factor analysis (BAYFA) and mixture of factor analyzers (MFA) to overcome the shortcoming of these existing methods. Information Criteria are brought into the context of the BAYFA model as a decision rule for choosing the number of factors m along with the Press and Shigemasu method, Gibbs Sampling and Iterated Conditional Modes deterministic optimization. Because of sensitivity of BAYFA on the prior information of the factor pattern structure, the prior factor pattern structure is learned directly from the given sample observations data adaptively using Sparse Root algorithm. Clustering and dimensionality reduction have long been considered two of the fundamental problems in unsupervised learning or statistical pattern recognition. In this dissertation, we shall introduce a novel statistical learning technique by focusing our attention on MFA from the perspective of a method for model-based density estimation to cluster the high-dimensional data and at the same time carry out factor analysis to reduce the curse of dimensionality simultaneously in an expert data mining system. The typical EM algorithm can get trapped in one of the many local maxima therefore, it is slow to converge and can never converge to global optima, and highly dependent upon initial values. We extend the EM algorithm proposed by cite{Gahramani1997} for the MFA using intelligent initialization techniques, K-means and regularized Mahalabonis distance and introduce the new Genetic Expectation Algorithm (GEM) into MFA in order to overcome the shortcomings of typical EM algorithm. Another shortcoming of EM algorithm for MFA is assuming the variance of the error vector and the number of factors is the same for each mixture. We propose Two Stage GEM algorithm for MFA to relax this constraint and obtain different numbers of factors for each population. In this dissertation, our approach will integrate statistical modeling procedures based on the information criteria as a fitness function to determine the number of mixture clusters and at the same time to choose the number factors that can be extracted from the data.

Page generated in 0.0535 seconds