Spelling suggestions: "subject:"false positives reduction"" "subject:"valse positives reduction""
1 |
USING MACHINE LEARNING TECHNIQUES TO IMPROVE STATIC CODE ANALYSIS TOOLS USEFULNESSEnas Ahmad Alikhashashneh (7013450) 16 October 2019 (has links)
<p>This dissertation proposes an approach to reduce the cost of manual inspections for as large a number of false positive warnings that are being reported by Static Code Analysis (SCA) tools as much as possible using Machine Learning (ML) techniques. The proposed approach neither assume to use the particular SCA tools nor depends on the specific programming language used to write the target source code or the application. To reduce the number of false positive warnings we first evaluated a number of SCA tools in terms of software engineering metrics using a highlighted synthetic source code named the Juliet test suite. From this evaluation, we concluded that the SCA tools report plenty of false positive warnings that need a manual inspection. Then we generated a number of datasets from the source code that forced the SCA tool to generate either true positive, false positive, or false negative warnings. The datasets, then, were used to train four of ML classifiers in order to classify the collected warnings from the synthetic source code. From the experimental results of the ML classifiers, we observed that the classifier that built using the Random Forests</p>
<p>(RF) technique outperformed the rest of the classifiers. Lastly, using this classifier and an instance-based transfer learning technique, we ranked a number of warnings that were aggregated from various open-source software projects. The experimental results show that the proposed approach to reduce the cost of the manual inspection of the false positive warnings outperformed the random ranking algorithm and was highly correlated with the ranked list that the optimal ranking algorithm generated.</p>
|
2 |
Classificação de anomalias e redução de falsos positivos em sistemas de detecção de intrusão baseados em rede utilizando métodos de agrupamento / Anomalies classification and false positives reduction in network intrusion detection systems using clustering methodsFerreira, Vinícius Oliveira [UNESP] 27 April 2016 (has links)
Submitted by VINÍCIUS OLIVEIRA FERREIRA null (viniciusoliveira@acmesecurity.org) on 2016-05-18T20:29:41Z
No. of bitstreams: 1
Dissertação-mestrado-vinicius-oliveira-biblioteca-final.pdf: 1594758 bytes, checksum: 0dbb0d2dd3fca3ed2b402b19b73006e7 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-05-20T16:27:30Z (GMT) No. of bitstreams: 1
ferreira_vo_me_sjrp.pdf: 1594758 bytes, checksum: 0dbb0d2dd3fca3ed2b402b19b73006e7 (MD5) / Made available in DSpace on 2016-05-20T16:27:30Z (GMT). No. of bitstreams: 1
ferreira_vo_me_sjrp.pdf: 1594758 bytes, checksum: 0dbb0d2dd3fca3ed2b402b19b73006e7 (MD5)
Previous issue date: 2016-04-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os Sistemas de Detecção de Intrusão baseados em rede (NIDS) são tradicionalmente divididos em dois tipos de acordo com os métodos de detecção que empregam, a saber: (i) detecção por abuso e (ii) detecção por anomalia. Aqueles que funcionam a partir da detecção de anomalias têm como principal vantagem a capacidade de detectar novos ataques, no entanto, é possível elencar algumas dificuldades com o uso desta metodologia. Na detecção por anomalia, a análise das anomalias detectadas pode se tornar dispendiosa, uma vez que estas geralmente não apresentam informações claras sobre os eventos maliciosos que representam; ainda, NIDSs que se utilizam desta metodologia sofrem com a detecção de altas taxas de falsos positivos. Neste contexto, este trabalho apresenta um modelo para a classificação automatizada das anomalias detectadas por um NIDS. O principal objetivo é a classificação das anomalias detectadas em classes conhecidas de ataques. Com essa classificação pretende-se, além da clara identificação das anomalias, a identificação dos falsos positivos detectados erroneamente pelos NIDSs. Portanto, ao abordar os principais problemas envolvendo a detecção por anomalias, espera-se equipar os analistas de segurança com melhores recursos para suas análises. / Network Intrusion Detection Systems (NIDS) are traditionally divided into two types according to the detection methods they employ, namely (i) misuse detection and (ii) anomaly detection. The main advantage in anomaly detection is its ability to detect new attacks. However, this methodology has some downsides. In anomaly detection, the analysis of the detected anomalies is expensive, since they often have no clear information about the malicious events they represent; also, it suffers with high amounts of false positives
detected. In this context, this work presents a model for automated classification of anomalies detected by an anomaly based NIDS. Our main goal is the classification of the detected anomalies in well-known classes of attacks. By these means, we intend the clear identification of anomalies as well as the identification of false positives erroneously detected by NIDSs. Therefore, by addressing the key issues surrounding anomaly based
detection, our main goal is to equip security analysts with best resources for their analyses.
|
Page generated in 0.0907 seconds