• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Embedded System for Classification and Dirt Detection on Surgical Instruments

Hallgrímsson, Guðmundur January 2019 (has links)
The need for automation in healthcare has been rising steadily in recent years, both to increase efficiency and for freeing educated workers from repetitive, menial, or even dangerous tasks. This thesis investigates the implementation of two pre-determined and pre-trained convolutional neural networks on an FPGA for the classification and dirt detection of surgical instruments in a robotics application. A good background on the inner workings and history of artificial neural networks is given and expanded on in the context of convolutional neural networks. The Winograd algorithm for computing convolutional operations is presented as a method for increasing the computational performance of convolutional neural networks. A selection of development platform and toolchains is then made. A high-level design of the overall system is explained, before details of the high-level synthesis implementation of the dirt detection convolutional neural network are shown. Measurements are then made on the performance of the high-level synthesis implementation of the various blocks needed for convolutional neural networks. The main convolutional kernel is implemented both by using the Winograd algorithm and the naive convolution algorithm and comparisons are made. Finally, measurements on the overall performance of the end-to-end system are made and conclusions are drawn. The final product of the project gives a good basis for further work in implementing a complete system to handle this functionality in a manner that is both efficient in power and low in latency. Such a system would utilize the different strengths of general-purpose sequential processing and the parallelism of an FPGA and tie those together in a single system. / Behovet av automatisering inom vård och omsorg har blivit allt större de senaste åren, både vad gäller effektivitet samt att befria utbildade arbetare från repetitiva, enkla eller till och med farliga arbetsmoment. Den här rapporten undersöker implementeringen av två tidigare för-definierade och för-tränade faltade neurala nätverk på en FPGA, för att klassificera och upptäcka föroreningar på kirurgiska verktyg. En bra bakgrund på hur neurala nätverk fungerar, och deras historia, presenteras i kontexten faltade neurala nätverk. Winograd algoritmen, som används för att beräkna faltningar, beskrivs som en metod med syfte att öka beräkningsmässig prestanda. Val av utvecklingsplattform och verktyg utförs. Systemet beskrivs på en hög nivå, innan detaljer om hög-nivå-syntesimplementeringen av förorenings-detekterings-nätverket visas. Mätningar görs sedan av de olika bygg-blockens prestanda. Kärnkoden med faltnings-algoritmen implementeras både med Winograd-algoritmen och med den traditionella, naiva, metoden, och utfallet för bägge metoderna jämförs. Slutligen utförs mätningar på hela systemets prestanda och slutsatser dras därav. Projektets slutprodukt kan användas som en bra bas för vidare utveckling av ett komplett system som både är effektivt angående effektförbrukning och har bra prestanda, genom att knyta ihop styrkan hos traditionella sekventiella processorer med parallelismen i en FPGA till ett enda system.
2

A Comparison of CNN and Transformer in Continual Learning / En jämförelse mellan CNN och Transformer för kontinuerlig Inlärning

Fu, Jingwen January 2023 (has links)
Within the realm of computer vision tasks, Convolutional Neural Networks (CNN) and Transformers represent two predominant methodologies, often subject to extensive comparative analyses elucidating their respective merits and demerits. This thesis embarks on an exploration of these two models within the framework of continual learning, with a specific focus on their propensities for resisting catastrophic forgetting. We hypothesize that Transformer models exhibit a higher resilience to catastrophic forgetting in comparison to their CNN counterparts. To substantiate this hypothesis, a meticulously crafted experimental design was implemented, involving the selection of diverse models and continual learning approaches, and careful tuning of the networks to ensure an equitable comparison. In the majority of conducted experiments, encompassing both the contexts of class incremental learning settings and task incremental learning settings, our results substantiate the aforementioned hypothesis. Nevertheless, the insights garnered also underscore the necessity for more exhaustive and encompassing experimental evaluations to fully validate the asserted hypothesis. / Inom datorseende är Convolutional Neural Networks (CNN) och Transformers två dominerande metoder, som ofta är föremål för omfattande jämförande analyser som belyser deras respektive fördelar och nackdelar. Denna avhandling utforskar dessa två modeller inom ramen för kontinuerligt lärande, med särskilt fokus på deras benägenhet att motstå katastrofal glömska. Vi antar att Transformer-modeller uppvisar en ökad motståndskraft mot katastrofal glömska i jämförelse med deras CNN-motsvarigheter. För att underbygga denna hypotes implementerades en noggrant utformad experimentell design, som involverade val av olika modeller och kontinuerliga inlärningstekniker, och noggrann inställning av nätverken för att säkerställa en rättvis jämförelse. I majoriteten av de genomförda experimenten, som omfattade både inkrementell klassinlärning och inkrementell uppgiftsinlärning, bekräftade våra resultat den ovannämnda hypotesen. De insikter vi fått understryker dock också behovet av mer uttömmande och omfattande experimentella utvärderingar för att fullt ut validera den påstådda hypotesen.

Page generated in 0.0776 seconds