• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Octonions and the Exceptional Lie Algebra g_2

McLewin, Kelly English 28 April 2004 (has links)
We first introduce the octonions as an eight dimensional vector space over a field of characteristic zero with a multiplication defined using a table. We also show that the multiplication rules for octonions can be derived from a special graph with seven vertices call the Fano Plane. Next we explain the Cayley-Dickson construction, which exhibits the octonions as the set of ordered pairs of quaternions. This approach parallels the realization of the complex numbers as ordered pairs of real numbers. The rest of the thesis is devoted to following a paper by N. Jacobson written in 1939 entitled "Cayley Numbers and Normal Simple Lie Algebras of Type G". We prove that the algebra of derivations on the octonions is a Lie algebra of type G_2. The proof proceeds by showing the set of derivations on the octonions is a Lie algebra, has dimension fourteen, and is semisimple. Next, we complexify the algebra of derivations on the octonions and show the complexification is simple. This suffices to show the complexification of the algebra of derivations is isomorphic to g_2 since g_2 is the only semisimple complex Lie algebra of dimension fourteen. Finally, we conclude the algebra of derivations on the octonions is a simple Lie algebra of type G_2. / Master of Science
2

Steinerovská barvení kubických grafů / Steiner coloring of cubic graphs

Tlustá, Stanislava January 2017 (has links)
This thesis is dedicated to the coloring of cubic graphs. It summarizes the knowledge we have about so called Steiner coloring, which is an edge-coloring such that the colors incident with one vertex form a triple of some partial Steiner system. The main objects of interest are the projective and affine systems. Afterwards the sufficient condition for universality of the system is stated and it is observed, that all other transitive Steiner triple systems satisfy it. This thesis also contains methods of construction of the coloring for the Fano plane, for the affine system Z3 3 and for the universal system created as a product of the Fano plane and the trivial system (F7 S⊠ 3). Finally an algorithm usable for the rest of the systems and graphs with bounded treewidth is presented.

Page generated in 0.0571 seconds