• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Searches for Radio Transients using the Long Wavelength Array

Tsai, Jr-Wei 12 July 2021 (has links)
We used the first station of the Long Wavelength Array (LWA) to observe giant pulses (GPs) from pulsars and search for other radio transients. Using the LWA with a bandwidth of 16 MHz at 39 MHz, we made a 24-hour observation of pulsar radio pulses from PSR B0950+08. The average pulse ux density and pulse width (dominated by "normal" pulses) are consistent with previous studies by others. Using techniques we developed for searching for radio transients, in this observation we detected 119 giant pulses (with signal-to-noise ratios 10 times larger than for the mean pulse). The giant pulses have a narrower temporal width (17.8 ms, on average) than the mean pulse (30.5 ms). Giant pulses occur at a rate of about 5.0 per hour, or 0.035% of the total number of pulse periods. The strength and rate of giant pulses is less than observed by others at ~100 MHz. The probability distribution of the cumulative pulse strength is a power law, but deviates from the Gaussian distribution of normal pulses. These results suggest PSR B0950+08 produces less frequent and weaker giant pulses at 39 MHz than at 100 MHz. We detected no other transients in this observation within a dispersion measure (DM) range from 1 to 90 pc cm³. Furthermore, we conducted observations of giant pulses from PSR B0950+08 in a separate set of observations of 12 hours made simultaneously at 42 and 74 MHz. In these observations we detected a total of 275 at 42 MHz and a total of 465 giant pulses at 74 MHz. Giant pulses with double-peak temporal structure have a shorter peak-to-peak separation compared to the average pulse. Once again, PSR B0950+08 appears to produce less frequent and weaker giant pulses than reported at 100 MHz. Giant pulses are identified with signal-to-noise ratios 10 times larger than for the mean pulse, and the probability distribution of the cumulative pulse strength is a power law, but deviate from the Gaussian distribution of normal pulses, for both frequencies. There were only 128 giant pulses detected simultaneously at 42 and 74 MHz, which implies that more than half of them are narrow-band radio pulses. Using these observations we analyzed the effect of scattering due to the interstellar medium on pulses with signal-to-noise ratio > 7 and the average pulse using a CLEAN-based algorithm, assuming a thin-screen scattering model. The scatter-broadening time constant τ ∝ ν<sup>α</sup>, where ν is the observing frequency. The resulting α as calculated from pulses with signal-tonoise ratio > 7 and for the average pulses is found to be α = −1.45±0.14 and −0.14±0.03, respectively. These results indicate differences along the line of sight from a Kolmogorov spectrum for electron density uctuations. We calculated the altitude of the emission region for the pulsar using the dipolar magnetic field model. We found a similar magnitude for the emission region altitudes of normal and giant pulses. We detected no other transient pulses in a wide DM range from 1 to 4990 pc cm⁻³. We also conducted another a 12-hour observational study of PSR B0031−07 at 38 and 74 MHz, simultaneously. Giant pulses were identified with ux densities of a factor of ≥ 90 and ≥ 80 times that of an average pulse, at 38 and 74 MHz. The cumulative pulse strength distribution follows a power law, and has a much more gradual slope than a Gaussian distribution for the normal pulses. We found 158 of the observed pulses at 38 MHz qualified as giant pulses. At 74 MHz a total of 221 of the observed pulses were giant pulses. Only 12 giant pulses were detected within the same pulse period at both 38 and 74 MHz, meaning that the majority of them are narrow-band radio pulses. No other radio transients were detected within a DM range 1 to 4990 pc cm⁻³. We used the same data processing pipeline for observations of pulsar GPs to search within the pulsar observations for fast radio bursts (FRBs). We did not detect any nonpulsar signals with signal-to-noise ratio larger than 10. When the radio transient signals propagate through the interstellar medium, they are affected by propagation effects such as dispersion and scattering. Scattering may limit the detectability of radio transients. By examination of archived pulsar profiles, we investigated the impact of scattering on observed pulses. We utilized a CLEAN-based strategy to decide the scatter-broadening time, τ , under both the thin-screen and uniform-medium scattering models and to determine the scatter-broadening time frequency scaling index, α, where τ ∝ ν<sup>α</sup>. In most cases the scattering tail was not large compared to the pulse width at half maximum. Still, we deconvolved 1342 pulse profiles from 347 pulsars assuming a Kolmogorov spectrum of the interstellar medium turbulence. For a subset of 21 pulsars the scattering-boarding tails were suficiently long to be estimated at the lowest frequencies. Since the scatter-broadening times were only determined distinctly for the subset of pulsars at the lowest observed frequency, we were restricted to utilizing upper limits on scatter-broadening times at higher frequencies for the assessment of the scatter-broadening-time frequency dependence. We include three new direct scatter-broadening time measurements at low frequencies and they are consistent with previous studies which were scaled from higher frequencies. Our findings are consistent with a relationship between the DM and scatter-broadening time which can range over more than two orders of magnitude in DM. One of the potential reasons that we did not detect FRBs is that transients may be highly scatter-broadened at low frequencies for high DM values. / Ph. D.
2

Binary and Fireball as Possible Origins of Fast Radio Bursts / 高速電波バーストの考えられる起源としての連星とファイアボール

Wada, Tomoki 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23703号 / 理博第4793号 / 新制||理||1686(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 井岡 邦仁, 教授 萩野 浩一, 教授 田中 貴浩 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
3

Etude des objets transitoires à haute énergie dans l'univers dans l'ère des observations multi-messager / Study of the high-energy transeint objects in the Universe in the era of the multimessenger observations

Turpin, Damien 07 December 2016 (has links)
L'Univers est continûement le théâtre d'événements explosifs capables de relâcher une énorme quantité d'énergie sur des courtes échelles de temps. Ces sources transitoires comme les sursauts gamma, les supernovae ou les noyaux actifs de galaxie sont souvent associées à des objets extrêmes comme des étoiles à neutrons ou des trous noirs. De manière générale, ces sources émettent des radiations électromagnétiques dans une large bande spectrale voire sur la totalité du spectre pour les cas les plus extrêmes. Dès lors, une analyse multi-longueur d'onde est vitale pour étudier et comprendre la physique complexe de ces objets. De plus, au voisinage de ces sources, des particules (rayons cosmiques, RC) pourraient être efficacement accélérées jusqu'à des énergies très elevées dans des processus de chocs violents. L'interaction de ces RCs avec l'environnement peut conduire à la production d'un nombre significatif de neutrinos de hautes énergies. Par conséquent, l'étude des objets transitoires par le biais de l'astronomie neutrino offre la possibilité d'identifier enfin la nature des puissants accélérateurs cosmiques.Cette thèse est dédiée à l'étude de deux sources transitoires parmi les plus extrêmes dans l'Univers : les sursauts gamma (en anglais, Gamma-Ray Bursts : GRBs) détectés il y a ~ 50 ans et les sursauts radio (en anglais, Fast Radio Bursts : FRBs) fraîchement découverts il y a ~ 15 ans. Ces sources sont caractérisées par l'émission "prompte" d'un flash gamma (keV-MeV) durant de quelques ms à plusieurs secondes dans le cadre des GRBs et d'un flash intense en radio (GHz) durant quelques ms pour les FRBs. Dans le cas des GRBs une émission rémanente dite "afterglow" est observée dans une large gamme spectrale (X, visible et radio) alors que jusqu'à présent aucune autre contrepartie électromagnétique provenant d'un FRB n'a été découverte. Ces dernières années des modèles d'émission multi-longueur d'onde et multi-messager ont été développés afin d'expliquer ces 2 phénomènes. L'objectif majeur de ce travail de thèse est de tester ces modèles d'émission afin de contraindre la physique et la nature de ces deux objets. Pour cela, une analyse détaillée des propriétés physiques de l'émission afterglow des GRBs a été menée grâce à un large échantillon de données collectées ces 20 dernières années par diverses télescopes. Cette étude a permis de mettre en évidence les lacunes et les réussites du modèle GRB dit "standard" mais aussi les liens physiques subtils existant entre l'émission prompte des GRBs et leurs rémanences. Une recherche de signal neutrino en coïncidence avec les GRBs/FRBs a aussi été réalisée avec le télescope à neutrinos ANTARES. Les résultats sont décrits dans cette thèse ainsi que les contraintes apportées sur les processus d'accélération des particules durant ces phénomènes transitoires. Enfin, ce manuscrit rend compte des différents programmes d'observations innovants qui ont été engagés sur les télescopes optiques TAROT et Zadko et le télescope à neutrinos ANTARES afin de contraindre la nature des progéniteurs des GRBs/FRBs. / The Universe is continuously the scene of explosive events capable of releasing a tremendous amount of energy in short time scales. These transients like Gamma-Ray Bursts, Supernovae or Active Galactic Nuclei are often associated with extreme objects such as neutron stars or black holes. Generally, these sources emit light in a large spectral energy range and sometimes in the whole electromagnetic spectrum for the most extreme cases. Thus, a multi-wavelength analysis is crucial to study and understand the complex physical processes at work. Furthermore, in the vicinity of these sources, particles (cosmic-rays, CRs) could be efficiently accelerated up to very high energies by violent shock mecanisms. The interaction of these CRs with the surrounding environment may lead to a substantial production of high-energy neutrinos. Therefore, the study of the high-energy transient objects through neutrino astronomy offer the possibility to finally identify the nature of the powerful cosmic accelerators a hundred year after the discovery of the cosmic-rays.This thesis is dedicated to the study of two transient sources among the most extreme ones observed in the Universe: the Gamma-Ray Bursts (GRBs) detected ~ 50 years ago and the Fast Radio Bursts (FRBs) newly discovered ~ 15 years ago. These sources are characterised by the "prompt" emission of a gamma-ray flash (keV-MeV) lasting few ms up to few seconds for GRBs and an intense pulse of radio light (GHz) lasting few ms for FRBs. In the case of GRBs a late broadband afterglow emission is observed in X-rays/optical/radio domain while up to now no other electromagnetic counterpart has ever been detected in coincidence with any FRBs. These last years, many models predicting a multi-wavelength and a multi-messenger emission from these two phenomena have been developped. The main goal of this thesis work is to test these models in order to constrain the physics and the nature of the GRBs/FRBs. To do so, a detailed analysis on the physical properties of the GRB afterglow emission was made thanks to a large set of data collected these last 20 years by various facilities. The study reveals the major problems but also the successes encountered with the so-called "standard" GRB model. Subtle connections between the prompt and the afterglow emission are also discussed. In addition, a search for a neutrino signal from GRBs/FRBs was realised with the ANTARES neutrino telescope. The results are described in this thesis as well as the constraints on the particle acceleration mecanisms occuring during these transient phenomena.At last, this manuscript presents the different innovative observational programs realised in the optical domain with the TAROT and Zadko telescopes and in the astroparticle side with the ANTARES neutrino telescope in order to probe the nature of the GRBs/FRBs progenitors.

Page generated in 0.0363 seconds